ﻻ يوجد ملخص باللغة العربية
We derive a continuity equation for the evolution of the SU(2) Wigner function under nonlinear Kerr evolution. We give explicit expressions for the resulting quantum Wigner current, and discuss the appearance of the classical limit. We show that the global structure of the quantum current significantly differs from the classical one, which is clearly reflected in the form of the corresponding stagnation lines.
We present analytic expressions for the $s$-parametrized currents on the sphere for both unitary and dissipative evolutions. We examine the spatial distribution of the flow generated by these currents for quadratic Hamiltonians. The results are appli
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between
We study a fractional conformal curvature flow on the standard unit sphere and prove a perturbation result of the fractional Nirenberg problem with fractional exponent $sigma in (1/2,1)$. This extends the result of Chen-Xu (Invent. Math. 187, no. 2,
Wegners method of flow equations offers a useful tool for diagonalizing a given Hamiltonian and is widely used in various branches of quantum physics. Here, generalizing this method, a condition is derived, under which the corresponding flow of a qua
Quantum engineering now allows to design and construct multi-qubit states in a range of physical systems. These states are typically quite complex in nature, with disparate, but relevant properties that include both single and multi-qubit coherences