ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-channel algebraic scattering (MCAS) method has been used to solve coupled sets of Lippmann-Schwinger equations for $alpha$+nucleus systems to find spectra of the compound systems. Low energy spectra for ${}^{12}$C, ${}^{16}$O, and ${}^{20}$Ne are found with the systems considered as the coupling of an $alpha$ particle with low-excitation states of the core nuclei, ${}^8$Be, ${}^{12}$C, and ${}^{16}$O, respectively. Collective models have been used to define the matrices of interacting potentials. Quadrupole (and octupole when relevant) deformation is allowed and taken to second order. The calculations also require a small monopole interaction to provide an extra energy gap commensurate with an effect of strong pairing forces. The results compare reasonably well with known spectra given the simple collective model prescriptions taken for the coupled-channel interactions. Improvement of those interaction specifics in the approach will give spectra and wave functions suitable for use in analyses of cross sections for $alpha$ scattering and capture by light-mass nuclei; reactions of great importance in nuclear astrophysics.
157 - P. R. Fraser , L. Canton , K. Amos 2014
One theoretical method for studying nuclear scattering and resonances is via the multi-channel algebraic scattering (MCAS) formalism. Studies to date with this method have used a simple collective-rotor prescription to model target states with which a nucleon couples. While generally these target states all belong to the same rotational band, for certain systems it is necessary to include coupling to states outside of that main band. Here, we extend MCAS to allow coupling of different strengths between such states and the rotor band. This is an essential consideration in studying the example examined herein, the scattering of neutrons from 22Ne.
Based on the results of a previous paper (Paper I), by performing the geometrical mapping via coherent states, phase transitions are investigated and compared within two algebraic cluster models. The difference between the Semimicroscopic Algebraic C luster Model (SACM) and the Phenomenological Algebraic Cluster Model (PACM) is that the former strictly observes the Pauli exclusion principle between the nucleons of the individual clusters, while the latter ignores it. From the technical point of view the SACM is more involved mathematically, while the formalism of the PACM is closer to that of other algebraic models with different physical content. First- and second-order phase transitions are identified in both models, while in the SACM a critical line also appears. Analytical results are complemented with numerical studies on {alpha}-cluster states of the neon-20 and magnesium-24 nuclei.
The geometrical mapping of algebraic nuclear cluster models is investigated within the coherent state formalism. Two models are considered: the Semimicroscopic Algebraic Cluster Model (SACM) and the Phenomenological Algebraic Cluster Model (PACM), wh ich is a special limit of the SACM. The SACM strictly observes the Pauli exclusion principle while the PACM does not. The discussion of the SACM is adapted to the coherent state formalism by introducing the new SO(3) dynamical symmetry limit and third-order interaction terms in the Hamiltonian. The potential energy surface is constructed in both models and it is found that the effects of the Pauli principle can be simulated by higher-order interaction terms in the PACM. The present study is also meant to serve as a starting point for investigating phase transitions in the two algebraic cluster models.
127 - L Canton , P R Fraser , J P Svenne 2010
The question of how the scattering cross section changes when the spectra of the colliding nuclei have low-excitation particle-emitting resonances is explored using a multi-channel algebraic scattering (MCAS) method. As a test case, the light-mass nu clear target 8Be, being particle-unstable, has been considered. Nucleon-nucleus scattering cross sections, as well as the spectra of the compound nuclei formed, have been determined from calculations that do, and do not, consider particle emission widths of the target nuclear states. The resonant character of the unstable excited states introduces a problem because the low-energy tails of these resonances can intrude into the sub-threshold, bound-state region. This unphysical behaviour needs to be corrected by modifying, in an energy-dependent way, the shape of the target resonances from the usual Lorentzian one. The resonance function must smoothly reach zero at the elastic threshold. Ways of achieving this condition are explored in this paper.
The physics of radioactive ion beams implies the description of weakly-bound nuclear systems. One key aspect concerns the coupling to low-lying collective-type excited states, which for these systems might not be stable levels, but particle emitting resonances. In this work we describe how the scattering cross section and compound spectra change when the colliding fragments have such collective excitations featuring particle emission. We explore this question in the framework of a multi-channel algebraic scattering method of determining nucleon-nucleus cross sections at low energies. For a range of light-mass, particle-unstable nuclear targets, scattering cross sections as well as the spectra of the compound nuclei formed have been determined from calculations that do and do not consider particle emission widths for nuclear states. Assuming a resonance character for target states markedly varies evaluated cross sections from those obtained assuming the target spectrum to have entirely discrete states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا