ﻻ يوجد ملخص باللغة العربية
The question of how the scattering cross section changes when the spectra of the colliding nuclei have low-excitation particle-emitting resonances is explored using a multi-channel algebraic scattering (MCAS) method. As a test case, the light-mass nuclear target 8Be, being particle-unstable, has been considered. Nucleon-nucleus scattering cross sections, as well as the spectra of the compound nuclei formed, have been determined from calculations that do, and do not, consider particle emission widths of the target nuclear states. The resonant character of the unstable excited states introduces a problem because the low-energy tails of these resonances can intrude into the sub-threshold, bound-state region. This unphysical behaviour needs to be corrected by modifying, in an energy-dependent way, the shape of the target resonances from the usual Lorentzian one. The resonance function must smoothly reach zero at the elastic threshold. Ways of achieving this condition are explored in this paper.
We present an outline of an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-ea
A Multi-Channel Algebraic Scattering (MCAS) approach has been used to analyze the spectra of two hyper-nuclear systems, Lambda-9Be and Lambda-13C. The splitting of the two odd-parity excited levels (1/2^- and 3/2^-) at 11 MeV excitation in Lambda-13C
Inspired by the recent work by Dietrich et al., substantiating validity of the adiabatic assumption in coupled-channel calculations, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coup
We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, $a_0$, and triplet, $a_1$, $n-p$ scattering lengths are large with respect to the range of the nuc
Interactions between hard partons and the quark-gluon plasma range from frequent soft interactions to rare hard scatterings. The larger number of soft interactions makes possible an effective stochastic description of parton-plasma interactions in te