ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupling to two target-state bands in the study of the n+22Ne system at low energy

157   0   0.0 ( 0 )
 نشر من قبل Paul Fraser
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

One theoretical method for studying nuclear scattering and resonances is via the multi-channel algebraic scattering (MCAS) formalism. Studies to date with this method have used a simple collective-rotor prescription to model target states with which a nucleon couples. While generally these target states all belong to the same rotational band, for certain systems it is necessary to include coupling to states outside of that main band. Here, we extend MCAS to allow coupling of different strengths between such states and the rotor band. This is an essential consideration in studying the example examined herein, the scattering of neutrons from 22Ne.

قيم البحث

اقرأ أيضاً

73 - Xiao Liang , Li Ou , Zhigang Xiao 2019
The reactions of nucleon and polarized deuteron scattered off a heavy target at large impact parameter with intermediate energies have been investigated by using the improved quantum molecular dynamics model. It is found that, due to the difference e ffect of isovector potential on proton and neutron, there is a significant difference between the angle distribution of elastic scattering protons and neutrons. To overcome the lack of monochromatic neutron beam, the reaction of polarized deuteron peripherally scattered off the heavy target is used to replace the reaction of individual proton and neutron scattered off heavy target to study the isospin effect. It is found that the distributions of elastic scattering angle of proton and neutron originating from the breakup of deuteron are very similar to the results of the individual proton- and neutron-induced reaction. A new probe more effective and more clean, namely the difference between elastic scattering angle of proton and neutron originating from the breakup of polarized deuteron, is promoted to constrain the symmetry energy at subsaturation density.
We consider the evolution of the neutron-nucleus scattering length for the lightest nuclei. We show that, when increasing the number of neutrons in the target nucleus, the strong Pauli repulsion is weakened and the balance with the attractive nucleon -nucleon interaction results into a resonant virtual state in $^{18}$B. We describe $^{19}$B in terms of a $^{17}$B-$n$-$n$ three-body system where the two-body subsystems $^{17}$B-$n$ and $n$-$n$ are unbound (virtual) states close to the unitary limit. The energy of $^{19}$B ground state is well reproduced and two low-lying resonances are predicted. Their eventual link with the Efimov physics is discussed. This model can be extended to describe the recently discovered resonant states in $^{20,21}$B.
The large energy-scale behaviour of the parity and time-reversal violating (PTV) pion-nucleon coupling constant is analyzed in a model combining renormalization-group techniques and the dressing of the PTV vertex with a pion loop. With the strong $pi N N$ vertex as a mixture of the pseudovector and pseudoscalar couplings, we show that depending on the admixture parameter, two qualitatively distinct types of behaviour are obtained for the PTV coupling constant at high energy scales: an asymptotic freedom or a fixed-point. We find a critical value of the admixture parameter which delineates these two scenarios. Several examples of the high-energy scale behaviour of the PTV $pi N N$ constant are considered, corresponding to realistic hadronic models of the strong pion-nucleon interaction.
We investigate the $bar KN$ and coupled channels system in a finite volume and study the properties of the $Lambda(1405)$ resonance. We calculate the energy levels in a finite volume and solve the inverse problem of determining the resonance position in the infinite volume. We devise the best strategy of analysis to obtain the two poles of the $Lambda(1405)$ in the infinite volume case, with sufficient precision to distinguish them.
We have developed a model for the N N --> N N pi pi reaction and evaluated cross sections for the different charged channels. The low energy part of those channels where the pions can be in an isospin zero state is dominated by N* excitation, driven by an isoscalar source recently found experimentally, followed by the decay N* --> N (pi pi, T=0, s-wave). At higher energies, and in channels where the pions are not in T=0, Delta excitation mechanisms become relevant. A rough agreement with the experimental data is obtained in most channels. Repercussions of the present findings for the ABC effect and the p p --> p p pi0 reaction close to threshold are also suggested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا