ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a resource theory of symmetric distinguishability, the fundamental objects of which are elementary quantum information sources, i.e., sources that emit one of two possible quantum states with given prior probabilities. Such a source can be represented by a classical-quantum state of a composite system $XA$, corresponding to an ensemble of two quantum states, with $X$ being classical and $A$ being quantum. We study the resource theory for two different classes of free operations: $(i)$ ${rm{CPTP}}_A$, which consists of quantum channels acting only on $A$, and $(ii)$ conditional doubly stochastic (CDS) maps acting on $XA$. We introduce the notion of symmetric distinguishability of an elementary source and prove that it is a monotone under both these classes of free operations. We study the tasks of distillation and dilution of symmetric distinguishability, both in the one-shot and asymptotic regimes. We prove that in the asymptotic regime, the optimal rate of converting one elementary source to another is equal to the ratio of their quantum Chernoff divergences, under both these classes of free operations. This imparts a new operational interpretation to the quantum Chernoff divergence. We also obtain interesting operational interpretations of the Thompson metric, in the context of the dilution of symmetric distinguishability.
Fawzi and Fawzi recently defined the sharp Renyi divergence, $D_alpha^#$, for $alpha in (1, infty)$, as an additional quantum Renyi divergence with nice mathematical properties and applications in quantum channel discrimination and quantum communicat ion. One of their open questions was the limit ${alpha} to 1$ of this divergence. By finding a new expression of the sharp divergence in terms of a minimization of the geometric Renyi divergence, we show that this limit is equal to the Belavkin-Staszewski relative entropy. Analogous minimizations of arbitrary generalized divergences lead to a new family of generalized divergences that we call kringel divergences, and for which we prove various properties including the data-processing inequality.
We prove the quantum Zeno effect in open quantum systems whose evolution, governed by quantum dynamical semigroups, is repeatedly and frequently interrupted by the action of a quantum operation. For the case of a quantum dynamical semigroup with a bo unded generator, our analysis leads to a refinement of existing results and extends them to a larger class of quantum operations. We also prove the existence of a novel strong quantum Zeno limit for quantum operations for which a certain spectral gap assumption, which all previous results relied on, is lifted. The quantum operations are instead required to satisfy a weaker property of strong power-convergence. In addition, we establish, for the first time, the existence of a quantum Zeno limit for the case of unbounded generators. We also provide a variety of physically interesting examples of quantum operations to which our results apply.
We investigate the energy-constrained (EC) diamond norm distance between unitary channels acting on possibly infinite-dimensional quantum systems, and establish a number of results. Firstly, we prove that optimal EC discrimination between two unitary channels does not require the use of any entanglement. Extending a result by Acin, we also show that a finite number of parallel queries suffices to achieve zero error discrimination even in this EC setting. Secondly, we employ EC diamond norms to study a novel type of quantum speed limits, which apply to pairs of quantum dynamical semigroups. We expect these results to be relevant for benchmarking internal dynamics of quantum devices. Thirdly, we establish a version of the Solovay--Kitaev theorem that applies to the group of Gaussian unitaries over a finite number of modes, with the approximation error being measured with respect to the EC diamond norm relative to the photon number Hamiltonian.
What is the minimum number of guesses needed on average to correctly guess a realization of a random variable? The answer to this question led to the introduction of the notion of a quantity called guesswork by Massey in 1994, which can be viewed as an alternate security criterion to entropy. In this paper, we consider the guesswork in the presence of quantum side information, and show that a general sequential guessing strategy is equivalent to performing a single measurement and choosing a guessing strategy from the outcome. We use this result to deduce entropic one-shot and asymptotic bounds on the guesswork in the presence of quantum side information, and to formulate a semi-definite program (SDP) to calculate the quantity. We evaluate the guesswork for a simple example involving the BB84 states, both numerically and analytically, and prove a continuity result that certifies the security of slightly imperfect key states when the guesswork is used as the security criterion.
In this paper we evaluate the entanglement assisted classical capacity of a class of quantum channels with long-term memory, which are convex combinations of memoryless channels. The memory of such channels can be considered to be given by a Markov chain which is aperiodic but not irreducible.
We provide lower and upper bounds on the information transmission capacity of one single use of a classical-quantum channel. The lower bound is expressed in terms of the Hoeffding capacity, that we define similarly to the Holevo capacity, but replaci ng the relative entropy with the Hoeffding distance. Similarly, our upper bound is in terms of a quantity obtained by replacing the relative entropy with the recently introduced max-relative entropy in the definition of the divergence radius of a channel.
Many of the traditional results in information theory, such as the channel coding theorem or the source coding theorem, are restricted to scenarios where the underlying resources are independent and identically distributed (i.i.d.) over a large numbe r of uses. To overcome this limitation, two different techniques, the information spectrum method and the smooth entropy framework, have been developed independently. They are based on new entropy measures, called spectral entropy rates and smooth entropies, respectively, that generalize Shannon entropy (in the classical case) and von Neumann entropy (in the more general quantum case). Here, we show that the two techniques are closely related. More precisely, the spectral entropy rate can be seen as the asymptotic limit of the smooth entropy. Our results apply to the quantum setting and thus include the classical setting as a special case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا