ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Assisted Classical Capacity of a Class of Quantum Channels with Long-Term Memory

101   0   0.0 ( 0 )
 نشر من قبل Nilanjana Datta
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we evaluate the entanglement assisted classical capacity of a class of quantum channels with long-term memory, which are convex combinations of memoryless channels. The memory of such channels can be considered to be given by a Markov chain which is aperiodic but not irreducible.

قيم البحث

اقرأ أيضاً

123 - A.S. Holevo , M.E. Shirokov 2012
The coding theorem for the entanglement-assisted communication via infinite-dimensional quantum channel with linear constraint is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and the $chi$ -capacity of constrained channels are obtained and conditions for their coincidence are given. Sufficient conditions for continuity of the entanglement-assisted classical capacity as a function of a channel are obtained. Some applications of the obtained results to analysis of Gaussian channels are considered. A general (continuous) version of the fundamental relation between the coherent information and the measure of privacy of classical information transmission by infinite-dimensional quantum channel is proved.
123 - Min-Hsiu Hsieh , Zhicheng Luo , 2008
We prove a regularized formula for the secret key-assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity cite{DHW 05RI}. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes private classical communication it{without} secret key assistance as a child protocol.
83 - E. Karpov , D. Daems , N. J. Cerf 2006
We study the capacity of d-dimensional quantum channels with memory modeled by correlated noise. We show that, in agreement with previous results on Pauli qubit channels, there are situations where maximally entangled input states achieve higher valu es of mutual information than product states. Moreover, a strong dependence of this effect on the nature of the noise correlations as well as on the parity of the space dimension is found. We conjecture that when entanglement gives an advantage in terms of mutual information, maximally entangled states saturate the channel capacity.
205 - Peter W. Shor 2004
We give the trade-off curve showing the capacity of a quantum channel as a function of the amount of entanglement used by the sender and receiver for transmitting information. The endpoints of this curve are given by the Holevo-Schumacher-Westmorelan d capacity formula and the entanglement-assisted capacity, which is the maximum over all input density matrices of the quantum mutual information. The proof we give is based on the Holevo-Schumacher-Westmoreland formula, and also gives a new and simpler proof for the entanglement-assisted capacity formula.
We solve the entanglement-assisted (EA) classical capacity region of quantum multiple-access channels with an arbitrary number of senders. As an example, we consider the bosonic thermal-loss multiple-access channel and solve the one-shot capacity reg ion enabled by an entanglement source composed of sender-receiver pairwise two-mode squeezed vacuum states. The EA capacity region is strictly larger than the capacity region without entanglement-assistance. With two-mode squeezed vacuum states as the source and phase modulation as the encoding, we also design practical receiver protocols to realize the entanglement advantages. Four practical receiver designs, based on optical parametric amplifiers, are given and analyzed. In the parameter region of a large noise background, the receivers can enable a simultaneous rate advantage of 82.0% for each sender. Due to teleportation and superdense coding, our results for EA classical communication can be directly extended to EA quantum communication at half of the rates. Our work provides a unique and practical network communication scenario where entanglement can be beneficial.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا