ﻻ يوجد ملخص باللغة العربية
We investigate the energy-constrained (EC) diamond norm distance between unitary channels acting on possibly infinite-dimensional quantum systems, and establish a number of results. Firstly, we prove that optimal EC discrimination between two unitary channels does not require the use of any entanglement. Extending a result by Acin, we also show that a finite number of parallel queries suffices to achieve zero error discrimination even in this EC setting. Secondly, we employ EC diamond norms to study a novel type of quantum speed limits, which apply to pairs of quantum dynamical semigroups. We expect these results to be relevant for benchmarking internal dynamics of quantum devices. Thirdly, we establish a version of the Solovay--Kitaev theorem that applies to the group of Gaussian unitaries over a finite number of modes, with the approximation error being measured with respect to the EC diamond norm relative to the photon number Hamiltonian.
One of the fundamental physical limits on the speed of time evolution of a quantum state is known in the form of the celebrated Mandelshtam-Tamm inequality. This inequality gives an answer to the question on how fast an isolated quantum system can ev
We generalize Katos adiabatic theorem to nonunitary dynamics with an isospectral generator. This enables us to unify two strong-coupling limits: one driven by fast oscillations under a Hamiltonian, and the other driven by strong damping under a Lindb
We present explicit evaluations of quantum speed limit times pertinent to the Markovian dynamics of an open continuous-variable system. Specifically, we consider the standard setting of a cavity mode of the quantum radiation field weakly coupled to a
The space of density matrices is embedded in a Euclidean space to deduce the dynamical equation satisfied by the state of an open quantum system. The Euclidean norm is used to obtain an explicit expression for the speed of the evolution of the state.
For the optimal success probability under minimum-error discrimination between $rgeq2$ arbitrary quantum states prepared with any a priori probabilities, we find new general analytical lower and upper bounds and specify the relations between these ne