ترغب بنشر مسار تعليمي؟ اضغط هنا

A wide array of random graph models have been postulated to understand properties of observed networks. Typically these models have a parameter $t$ and a critical time $t_c$ when a giant component emerges. It is conjectured that for a large class of models, the nature of this emergence is similar to that of the ErdH{o}s-Renyi random graph, in the sense that (a) the sizes of the maximal components in the critical regime scale like $n^{2/3}$, and (b) the structure of the maximal components at criticality (rescaled by $n^{-1/3}$) converges to random fractals. To date, (a) has been proven for a number of models using different techniques. This paper develops a general program for proving (b) that requires three ingredients: (i) in the critical scaling window, components merge approximately like the multiplicative coalescent, (ii) scaling exponents of susceptibility functions are the same as that of the ErdH{o}s-Renyi random graph, and (iii) macroscopic averaging of distances between vertices in the barely subcritical regime. We show that these apply to two fundamental random graph models: the configuration model and inhomogeneous random graphs with a finite ground space. For these models, we also obtain new results for component sizes at criticality and structural properties in the barely subcritical regime.
We consider graphs with vertices of degree 1 or 2 and prove that the numbers of components of sizes 2 to q have a limit normal distribution for any q > 1. The result is also extended to multigraphs.
We revisit the discrete additive and multiplicative coalescents, starting with $n$ particles with unit mass. These cases are known to be related to some combinatorial coalescent processes: a time reversal of a fragmentation of Cayley trees or a parki ng scheme in the additive case, and the random graph process $(G(n,p))_p$ in the multiplicative case. Time being fixed, encoding these combinatorial objects in real-valued processes indexed by the line is the key to describing the asymptotic behaviour of the masses as $nto +infty$. We propose to use the Prim order on the vertices instead of the classical breadth-first (or depth-first) traversal to encode the combinatorial coalescent processes. In the additive case, this yields interesting connections between the different representations of the process. In the multiplicative case, it allows one to answer to a stronger version of an open question of Aldous [Ann. Probab., vol. 25, pp. 812--854, 1997]: we prove that not only the sequence of (rescaled) masses, seen as a process indexed by the time $lambda$, converges in distribution to the reordered sequence of lengths of the excursions above the current minimum of a Brownian motion with parabolic drift $(B_t+lambda t - t^2/2, tgeq 0)$, but we also construct a version of the standard augmented multiplicative coalescent of Bhamidi, Budhiraja and Wang [Probab. Theory Rel., to appear] using an additional Poisson point process.
We investigate the effective resistance $R_n$ and conductance $C_n$ between the root and leaves of a binary tree of height $n$. In this electrical network, the resistance of each edge $e$ at distance $d$ from the root is defined by $r_e=2^dX_e$ where the $X_e$ are i.i.d. positive random variables bounded away from zero and infinity. It is shown that $mathbf{E}R_n=nmathbf{E}X_e-(operatorname {mathbf{Var}}(X_e)/mathbf{E}X_e)ln n+O(1)$ and $operatorname {mathbf{Var}}(R_n)=O(1)$. Moreover, we establish sub-Gaussian tail bounds for $R_n$. We also discuss some possible extensions to supercritical Galton--Watson trees.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا