ﻻ يوجد ملخص باللغة العربية
We investigate the effective resistance $R_n$ and conductance $C_n$ between the root and leaves of a binary tree of height $n$. In this electrical network, the resistance of each edge $e$ at distance $d$ from the root is defined by $r_e=2^dX_e$ where the $X_e$ are i.i.d. positive random variables bounded away from zero and infinity. It is shown that $mathbf{E}R_n=nmathbf{E}X_e-(operatorname {mathbf{Var}}(X_e)/mathbf{E}X_e)ln n+O(1)$ and $operatorname {mathbf{Var}}(R_n)=O(1)$. Moreover, we establish sub-Gaussian tail bounds for $R_n$. We also discuss some possible extensions to supercritical Galton--Watson trees.
We introduce a general recursive method to construct continuum random trees (CRTs) from independent copies of a random string of beads, that is, any random interval equipped with a random discrete probability measure, and from related structures. We
The Maki-Thompson rumor model is defined by assuming that a population represented by a graph is subdivided into three classes of individuals; namely, ignorants, spreaders and stiflers. A spreader tells the rumor to any of its nearest ignorant neighb
Let $mathcal{T}$ be a rooted tree endowed with the natural partial order $preceq$. Let $(Z(v))_{vin mathcal{T}}$ be a sequence of independent standard Gaussian random variables and let $alpha = (alpha_k)_{k=1}^infty$ be a sequence of real numbers wit
We study the sizes of the Voronoi cells of $k$ uniformly chosen vertices in a random split tree of size $n$. We prove that, for $n$ large, the largest of these $k$ Voronoi cells contains most of the vertices, while the sizes of the remaining ones are
We address questions of logic and expressibility in the context of random rooted trees. Infiniteness of a rooted tree is not expressible as a first order sentence, but is expressible as an existential monadic second order sentence (EMSO). On the othe