ترغب بنشر مسار تعليمي؟ اضغط هنا

Limit law for number of components of fixed sizes of graphs with degree one or two

58   0   0.0 ( 0 )
 نشر من قبل Elie de Panafieu
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider graphs with vertices of degree 1 or 2 and prove that the numbers of components of sizes 2 to q have a limit normal distribution for any q > 1. The result is also extended to multigraphs.


قيم البحث

اقرأ أيضاً

An edge-coloured graph $G$ is called $properly$ $connected$ if every two vertices are connected by a proper path. The $proper$ $connection$ $number$ of a connected graph $G$, denoted by $pc(G)$, is the smallest number of colours that are needed in or der to make $G$ properly connected. Susan A. van Aardt et al. gave a sufficient condition for the proper connection number to be at most $k$ in terms of the size of graphs. In this note, %optimizes the boundary of the number of edges %we study the $proper$ $connection$ $number$ is under the conditions of adding the minimum degree and optimizing the number of edges. our main result is the following, by adding a minimum degree condition: Let $G$ be a connected graph of order $n$, $kgeq3$. If $|E(G)|geq binom{n-m-(k+1-m)(delta+1)}{2} +(k+1-m)binom{delta+1}{2}+k+2$, then $pc(G)leq k$, where $m$ takes the value $t$ if $delta=1$ and $lfloor frac{k}{delta-1} rfloor$ if $deltageq2$. Furthermore, if $k=2$ and $delta=2$, %(i.e., $|E(G)|geq binom{n-5}{2} +7$) $pc(G)leq 2$, except $Gin {G_{1}, G_{n}}$ ($ngeq8$), where $G_{1}=K_{1}vee 3K_{2}$ and $G_{n}$ is obtained by taking a complete graph $K_{n-5}$ and $K_{1}vee (2K_{2}$) with an arbitrary vertex of $K_{n-5}$ and a vertex with $d(v)=4$ in $K_{1}vee (2K_{2}$) being joined. If $k=2$, $delta geq 3$, we conjecture $pc(G)leq 2$, where $m$ takes the value $1$ if $delta=3$ and $0$ if $deltageq4$ in the assumption.
135 - Andrei Gagarin 2008
We adapt the classical 3-decomposition of any 2-connected graph to the case of simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree of a connected graph, we deduce from this decomposition a bicolored tree tc(g) associat ed with any 2-connected graph g, whose white vertices are the 3-components of g (3-connected components or polygons) and whose black vertices are bonds linking together these 3-components, arising from separating pairs of vertices of g. Two fundamental relationships on graphs and networks follow from this construction. The first one is a dissymmetry theorem which leads to the expression of the class B=B(F) of 2-connected graphs, all of whose 3-connected components belong to a given class F of 3-connected graphs, in terms of various rootings of B. The second one is a functional equation which characterizes the corresponding class R=R(F) of two-pole networks all of whose 3-connected components are in F. All the rootings of B are then expressed in terms of F and R. There follow corresponding identities for all the associated series, in particular the edge index series. Numerous enumerative consequences are discussed.
In 1985, Mader conjectured the existence of a function $f$ such that every digraph with minimum out-degree at least $f(k)$ contains a subdivision of the transitive tournament of order $k$. This conjecture is still completely open, as the existence of $f(5)$ remains unknown. In this paper, we show that if $D$ is an oriented path, or an in-arborescence (i.e., a tree with all edges oriented towards the root) or the union of two directed paths from $x$ to $y$ and a directed path from $y$ to $x$, then every digraph with minimum out-degree large enough contains a subdivision of $D$. Additionally, we study Maders conjecture considering another graph parameter. The dichromatic number of a digraph $D$ is the smallest integer $k$ such that $D$ can be partitioned into $k$ acyclic subdigraphs. We show that any digraph with dichromatic number greater than $4^m (n-1)$ contains every digraph with $n$ vertices and $m$ arcs as a subdivision.
151 - Yue Ma , Xinmin Hou , Jun Gao 2021
Given a graph $G$, let $f_{G}(n,m)$ be the minimal number $k$ such that every $k$ independent $n$-sets in $G$ have a rainbow $m$-set. Let $mathcal{D}(2)$ be the family of all graphs with maximum degree at most two. Aharoni et al. (2019) conjectured t hat (i) $f_G(n,n-1)=n-1$ for all graphs $Ginmathcal{D}(2)$ and (ii) $f_{C_t}(n,n)=n$ for $tge 2n+1$. Lv and Lu (2020) showed that the conjecture (ii) holds when $t=2n+1$. In this article, we show that the conjecture (ii) holds for $tgefrac{1}{3}n^2+frac{44}{9}n$. Let $C_t$ be a cycle of length $t$ with vertices being arranged in a clockwise order. An ordered set $I=(a_1,a_2,ldots,a_n)$ on $C_t$ is called a $2$-jump independent $n$-set of $C_t$ if $a_{i+1}-a_i=2pmod{t}$ for any $1le ile n-1$. We also show that a collection of 2-jump independent $n$-sets $mathcal{F}$ of $C_t$ with $|mathcal{F}|=n$ admits a rainbow independent $n$-set, i.e. (ii) holds if we restrict $mathcal{F}$ on the family of 2-jump independent $n$-sets. Moreover, we prove that if the conjecture (ii) holds, then (i) holds for all graphs $Ginmathcal{D}(2)$ with $c_e(G)le 4$, where $c_e(G)$ is the number of components of $G$ isomorphic to cycles of even lengths.
Generalizing well-known results of ErdH{o}s and Lovasz, we show that every graph $G$ contains a spanning $k$-partite subgraph $H$ with $lambda{}(H)geq lceil{}frac{k-1}{k}lambda{}(G)rceil$, where $lambda{}(G)$ is the edge-connectivity of $G$. In parti cular, together with a well-known result due to Nash-Williams and Tutte, this implies that every $7$-edge-connected graphs contains a spanning bipartite graph whose edge set decomposes into two edge-disjoint spanning trees. We show that this is best possible as it does not hold for infintely many $6$-edge-connected graphs. For directed graphs, it was shown in [6] that there is no $k$ such that every $k$-arc-connected digraph has a spanning strong bipartite subdigraph. We prove that every strong digraph has a spanning strong 3-partite subdigraph and that every strong semicomplete digraph on at least 6 vertices contains a spanning strong bipartite subdigraph. jbj{We generalize this result to higher connectivities by proving} that, for every positive integer $k$, every $k$-arc-connected digraph contains a spanning $(2k+1$)-partite subdigraph which is $k$-arc-connected and this is best possible. A conjecture in [18] implies that every digraph of minimum out-degree $2k-1$ contains a spanning $3$-partite subdigraph with minimum out-degree at least $k$. We prove that the bound $2k-1$ would be best possible by providing an infinite class of digraphs with minimum out-degree $2k-2$ which do not contain any spanning $3$-partite subdigraph in which all out-degrees are at least $k$. We also prove that every digraph of minimum semi-degree at least $3r$ contains a spanning $6$-partite subdigraph in which every vertex has in- and out-degree at least $r$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا