ترغب بنشر مسار تعليمي؟ اضغط هنا

Node embedding is a powerful approach for representing the structural role of each node in a graph. $textit{Node2vec}$ is a widely used method for node embedding that works by exploring the local neighborhoods via biased random walks on the graph. Ho wever, $textit{node2vec}$ does not consider edge weights when computing walk biases. This intrinsic limitation prevents $textit{node2vec}$ from leveraging all the information in weighted graphs and, in turn, limits its application to many real-world networks that are weighted and dense. Here, we naturally extend $textit{node2vec}$ to $textit{node2vec+}$ in a way that accounts for edge weights when calculating walk biases, but which reduces to $textit{node2vec}$ in the cases of unweighted graphs or unbiased walks. We empirically show that $textit{node2vec+}$ is more robust to additive noise than $textit{node2vec}$ in weighted graphs using two synthetic datasets. We also demonstrate that $textit{node2vec+}$ significantly outperforms $textit{node2vec}$ on a commonly benchmarked multi-label dataset (Wikipedia). Furthermore, we test $textit{node2vec+}$ against GCN and GraphSAGE using various challenging gene classification tasks on two protein-protein interaction networks. Despite some clear advantages of GCN and GraphSAGE, they show comparable performance with $textit{node2vec+}$. Finally, $textit{node2vec+}$ can be used as a general approach for generating biased random walks, benefiting all existing methods built on top of $textit{node2vec}$. $textit{Node2vec+}$ is implemented as part of $texttt{PecanPy}$, which is available at https://github.com/krishnanlab/PecanPy .
In this work, we systematically study the two-proton($2p$) radioactivity half-lives using the two-potential approach while the nuclear potential is obtained by using Skyrme-Hartree-Fock approach with the Skyrme effective interaction of {SLy8}. For tr ue $2p$ radioactivity($Q_{2p}$ $>$ 0 and $Q_p$ $< $0, where the $Q_p$ and $Q_{2p}$ are the released energy of the one-proton and two-proton radioactivity), the standard deviation between the experimental half-lives and our theoretical calculations is {0.701}. In addition, we extend this model to predict the half-lives of 15 possible $2p$ radioactivity candidates with $Q_{2p}$ $>$ 0 taken from the evaluated atomic mass table AME2016. The calculated results indicate that a clear linear relationship between the logarithmic $2p$ radioactivity half-lives $rm{log}_{10}T_{1/2}$ and coulomb parameters [ ($Z_{d}^{0.8}$+$l^{0.25}$)$Q_{2p}^{-1/2}$] considered the effect of orbital angular momentum proposed by Liu $et$ $al$ [Chin. Phys. C textbf{45}, 024108 (2021)] is also existed. For comparison, the generalized liquid drop model(GLDM), the effective liquid drop model(ELDM) and Gamow-like model are also used. Our predicted results are consistent with the ones obtained by the other models.
225 - Liming Ling , Xuan Sun 2021
We study the spectral (linear) stability and orbital (nonlinear) stability of the elliptic solutions for the focusing modified Korteweg-de Vries (mKdV) equation with respect to subharmonic perturbations and construct the corresponding breather soluti ons to exhibit the unstable or stable dynamic behavior. The elliptic function solutions of mKdV equation and the fundamental solutions of Lax pair are exactly represented by using the theta function. Based on the `modified squared wavefunction (MSW) method, we construct all linear independent solutions of the linearized KdV equation, and then provide a necessary and sufficient condition of the spectral stability for the elliptic function solutions with respect to subharmonic perturbations. In the case of spectrum stable, the orbital stability of the elliptic function solutions with respect to subharmonic perturbations is established under a suitable Hilbert space. Using Darboux-Backlund transformation, we construct the breather solutions to exhibit the unstable or stable dynamic behavior. Through analyzing the asymptotical behavior, we find the breather solution under the $mathrm{cn}$-background is equivalent to the elliptic function solution adding a small perturbation as $ttopminfty$.
Ferroelectric HfO2-based materials hold great potential for widespread integration of ferroelectricity into modern electronics due to their robust ferroelectric properties at the nanoscale and compatibility with the existing Si technology. Earlier wo rk indicated that the nanometer crystal grain size was crucial for stabilization of the ferroelectric phase of hafnia. This constraint caused high density of unavoidable structural defects of the HfO2-based ferroelectrics, obscuring the intrinsic ferroelectricity inherited from the crystal space group of bulk HfO2. Here, we demonstrate the intrinsic ferroelectricity in Y-doped HfO2 films of high crystallinity. Contrary to the common expectation, we show that in the 5% Y-doped HfO2 epitaxial thin films, high crystallinity enhances the spontaneous polarization up to a record-high 50 {mu}C/cm2 value at room temperature. The high spontaneous polarization persists at reduced temperature, with polarization values consistent with our theoretical predictions, indicating the dominant contribution from the intrinsic ferroelectricity. The crystal structure of these films reveals the Pca21 orthorhombic phase with a small rhombohedral distortion, underlining the role of the anisotropic stress and strain. These results open a pathway to controlling the intrinsic ferroelectricity in the HfO2-based materials and optimizing their performance in applications.
Generating pre-initial conditions (or particle loads) is the very first step to set up a cosmological N-body simulation. In this work, we revisit the numerical convergence of pre-initial conditions on dark matter halo properties using a set of simula tions which only differs in initial particle loads, i.e. grid, glass, and the newly introduced capacity constrained Voronoi tessellation (CCVT). We find that the median halo properties agree fairly well (i.e. within a convergence level of a few per cent) among simulations running from different initial loads. We also notice that for some individual haloes cross-matched among different simulations, the relative difference of their properties sometimes can be several tens of per cent. By looking at the evolution history of these poorly converged haloes, we find that they are usually merging haloes or haloes have experienced recent merger events, and their merging processes in different simulations are out-of-sync, making the convergence of halo properties become poor temporarily. We show that, comparing to the simulation starting with an anisotropic grid load, the simulation with an isotropic CCVT load converges slightly better to the simulation with a glass load, which is also isotropic. Among simulations with different pre-initial conditions, haloes in higher density environments tend to have their properties converged slightly better. Our results confirm that CCVT loads behave as well as the widely used grid and glass loads at small scales, and for the first time we quantify the convergence of two independent isotropic particle loads (i.e. glass and CCVT) on halo properties.
94 - Danwei Cai , Ming Li 2021
This report describes the submission of the DKU-DukeECE team to the self-supervision speaker verification task of the 2021 VoxCeleb Speaker Recognition Challenge (VoxSRC). Our method employs an iterative labeling framework to learn self-supervised sp eaker representation based on a deep neural network (DNN). The framework starts with training a self-supervision speaker embedding network by maximizing agreement between different segments within an utterance via a contrastive loss. Taking advantage of DNNs ability to learn from data with label noise, we propose to cluster the speaker embedding obtained from the previous speaker network and use the subsequent class assignments as pseudo labels to train a new DNN. Moreover, we iteratively train the speaker network with pseudo labels generated from the previous step to bootstrap the discriminative power of a DNN. Also, visual modal data is incorporated in this self-labeling framework. The visual pseudo label and the audio pseudo label are fused with a cluster ensemble algorithm to generate a robust supervisory signal for representation learning. Our submission achieves an equal error rate (EER) of 5.58% and 5.59% on the challenge development and test set, respectively.
We consider the holographic QCD model with a planar horizon in the D dimensions with different consistent metric solutions. We investigate the black hole thermodynamics, phase diagram and equations of state (EoS) in different dimensions. The temperat ure and chemical potential dependence of the drag force and diffusion coefficient also have been studied. From the results, the energy loss of heavy quark shows an enhancement near the phase transition temperature in D dimensions. This finding illustrates that the energy loss of heavy quark has a nontrivial and non-monotonic dependence on temperature. Furthermore, we find the heavy quark may lose less energy in higher dimension. The diffusion coefficient is larger in higher dimension.
Purpose: To introduce two novel learning-based motion artifact removal networks (LEARN) for the estimation of quantitative motion- and $B0$-inhomogeneity-corrected $R_2^ast$ maps from motion-corrupted multi-Gradient-Recalled Echo (mGRE) MRI data. M ethods: We train two convolutional neural networks (CNNs) to correct motion artifacts for high-quality estimation of quantitative $B0$-inhomogeneity-corrected $R_2^ast$ maps from mGRE sequences. The first CNN, LEARN-IMG, performs motion correction on complex mGRE images, to enable the subsequent computation of high-quality motion-free quantitative $R_2^ast$ (and any other mGRE-enabled) maps using the standard voxel-wise analysis or machine-learning-based analysis. The second CNN, LEARN-BIO, is trained to directly generate motion- and $B0$-inhomogeneity-corrected quantitative $R_2^ast$ maps from motion-corrupted magnitude-only mGRE images by taking advantage of the biophysical model describing the mGRE signal decay. We show that both CNNs trained on synthetic MR images are capable of suppressing motion artifacts while preserving details in the predicted quantitative $R_2^ast$ maps. Significant reduction of motion artifacts on experimental in vivo motion-corrupted data has also been achieved by using our trained models. Conclusion: Both LEARN-IMG and LEARN-BIO can enable the computation of high-quality motion- and $B0$-inhomogeneity-corrected $R_2^ast$ maps. LEARN-IMG performs motion correction on mGRE images and relies on the subsequent analysis for the estimation of $R_2^ast$ maps, while LEARN-BIO directly performs motion- and $B0$-inhomogeneity-corrected $R_2^ast$ estimation. Both LEARN-IMG and LEARN-BIO jointly process all the available gradient echoes, which enables them to exploit spatial patterns available in the data. The high computational speed of LEARN-BIO is an advantage that can lead to a broader clinical application.
Simulations of high-complexity quantum systems, which are intractable for classical computers, can be efficiently done with quantum computers. Similarly, the increasingly complex quantum electronic circuits themselves will also need efficient simulat ions on quantum computers, which in turn will be important in quantum-aided design for next-generation quantum processors. Here, we implement variational quantum eigensolvers to simulate a Josephson-junction-array quantum circuit, which leads to the discovery of a new type of high-performance qubit, plasonium. We fabricate this new qubit and demonstrate that it exhibits not only long coherence time and high gate fidelity, but also a shrinking physical size and larger anharmonicity than the transmon, which can offer a number of advantages for scaling up multi-qubit devices. Our work opens the way to designing advanced quantum processors using existing quantum computing resources.
In this paper, we propose to align sentence representations from different languages into a unified embedding space, where semantic similarities (both cross-lingual and monolingual) can be computed with a simple dot product. Pre-trained language mode ls are fine-tuned with the translation ranking task. Existing work (Feng et al., 2020) uses sentences within the same batch as negatives, which can suffer from the issue of easy negatives. We adapt MoCo (He et al., 2020) to further improve the quality of alignment. As the experimental results show, the sentence representations produced by our model achieve the new state-of-the-art on several tasks, including Tatoeba en-zh similarity search (Artetxe and Schwenk, 2019b), BUCC en-zh bitext mining, and semantic textual similarity on 7 datasets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا