ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical convergence of pre-initial conditions on dark matter halo properties

279   0   0.0 ( 0 )
 نشر من قبل Tianchi Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Generating pre-initial conditions (or particle loads) is the very first step to set up a cosmological N-body simulation. In this work, we revisit the numerical convergence of pre-initial conditions on dark matter halo properties using a set of simulations which only differs in initial particle loads, i.e. grid, glass, and the newly introduced capacity constrained Voronoi tessellation (CCVT). We find that the median halo properties agree fairly well (i.e. within a convergence level of a few per cent) among simulations running from different initial loads. We also notice that for some individual haloes cross-matched among different simulations, the relative difference of their properties sometimes can be several tens of per cent. By looking at the evolution history of these poorly converged haloes, we find that they are usually merging haloes or haloes have experienced recent merger events, and their merging processes in different simulations are out-of-sync, making the convergence of halo properties become poor temporarily. We show that, comparing to the simulation starting with an anisotropic grid load, the simulation with an isotropic CCVT load converges slightly better to the simulation with a glass load, which is also isotropic. Among simulations with different pre-initial conditions, haloes in higher density environments tend to have their properties converged slightly better. Our results confirm that CCVT loads behave as well as the widely used grid and glass loads at small scales, and for the first time we quantify the convergence of two independent isotropic particle loads (i.e. glass and CCVT) on halo properties.



قيم البحث

اقرأ أيضاً

We investigate the correlation between nine different dark matter halo properties using a rank correlation analysis and a Principal Component Analysis for a sample of haloes spanning five orders of magnitude in mass. We consider mass and dimensionles s measures of concentration, age, relaxedness, sphericity, triaxiality, substructure, spin, and environment, where the latter is defined in a way that makes it insensitive to mass. We find that concentration is the most fundamental property. Except for environment, all parameters are strongly correlated with concentration. Concentration, age, substructure, mass, sphericity and relaxedness can be considered a single family of parameters, albeit with substantial scatter. In contrast, spin, environment, and triaxiality are more independent, although spin does correlate strongly with substructure and both spin and triaxiality correlate substantially with concentration. Although mass sets the scale of a halo, all other properties are more sensitive to concentration.
90 - Fangzhou Jiang 2016
We present a study of unprecedented statistical power regarding the halo-to-halo variance of dark matter substructure. Using a combination of N-body simulations and a semi-analytical model, we investigate the variance in subhalo mass fractions and su bhalo occupation numbers, with an emphasis on how these statistics scale with halo formation time. We demonstrate that the subhalo mass fraction, f_sub, is mainly a function of halo formation time, with earlier forming haloes having less substructure. At fixed formation redshift, the average f_sub is virtually independent of halo mass, and the mass dependence of f_sub is therefore mainly a manifestation of more massive haloes assembling later. We compare observational constraints on f_sub from gravitational lensing to our model predictions and simulation results. Although the inferred f_sub are substantially higher than the median LCDM predictions, they fall within the 95th percentile due to halo-to-halo variance. We show that while the halo occupation distribution of subhaloes, P(N|M), is super-Poissonian for large <N>, a well established result, it becomes sub-Poissonian for <N> < 2. Ignoring the non-Poissonity results in systematic errors of the clustering of galaxies of a few percent, and with a complicated scale- and luminosity-dependence. Earlier-formed haloes have P(N|M) closer to a Poisson distribution, suggesting that the dynamical evolution of subhaloes drives the statistics towards Poissonian. Contrary to a recent claim, the non-Poissonity of subhalo occupation statistics does not vanish by selecting haloes with fixed mass and fixed formation redshift. Finally, we use subhalo occupation statistics to put loose constraints on the mass and formation redshift of the Milky Way halo. Using observational constraints on the V_max of the most massive satellites, we infer that 0.25<M_vir/10^12M_sun/h<1.4 and 0.1<z_f<1.4 at 90% confidence.
We quantify the error in the results of mixed baryon--dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations, is of the order of few to ten percent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) {using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids}, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using longitudinal-gauge velocities with synchronous-gauge densities, and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that dark matter and baryons experience a scale-dependent growth after photon decoupling, which results in directions of velocity which are not the same as their direction of displacement. We compare the outcome of hydrodynamic simulations with these four approximations to our reference simulation, all setup with the same random seed and simulated using Gadget-III.
185 - Philippe Jetzer 2013
Microlensing started with the seminal paper by Paczynski in 1986, first with observations towards the Large Magellanic Cloud and the galactic bulge. Since then many other targets have been observed and new applications have been found. In particular, it turned out to be a powerful method to detect planets in our galaxy and even in the nearby M31. Here, we will present some results obtained so far by microlensing without being, however, exhaustive.
We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In ad dition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 $N$-body/hydrodynamic simulation code, paying particular attention to the effects of the gas halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. On the other hand, the SFRs in the models with a gas halo emerge to be either relatively flat throughout the simulations or increasing over a gigayear and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored, and expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا