ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of elliptic function solutions for the focusing modified KdV equation

226   0   0.0 ( 0 )
 نشر من قبل Liming Ling
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spectral (linear) stability and orbital (nonlinear) stability of the elliptic solutions for the focusing modified Korteweg-de Vries (mKdV) equation with respect to subharmonic perturbations and construct the corresponding breather solutions to exhibit the unstable or stable dynamic behavior. The elliptic function solutions of mKdV equation and the fundamental solutions of Lax pair are exactly represented by using the theta function. Based on the `modified squared wavefunction (MSW) method, we construct all linear independent solutions of the linearized KdV equation, and then provide a necessary and sufficient condition of the spectral stability for the elliptic function solutions with respect to subharmonic perturbations. In the case of spectrum stable, the orbital stability of the elliptic function solutions with respect to subharmonic perturbations is established under a suitable Hilbert space. Using Darboux-Backlund transformation, we construct the breather solutions to exhibit the unstable or stable dynamic behavior. Through analyzing the asymptotical behavior, we find the breather solution under the $mathrm{cn}$-background is equivalent to the elliptic function solution adding a small perturbation as $ttopminfty$.

قيم البحث

اقرأ أيضاً

The $n$-fold Darboux transformation $T_{n}$ of the focusing real mo-di-fied Kor-te-weg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the $n$-soliton solutions of the mKdV equation are als o expressed by determinants whose elements consist of the eigenvalues $lambda_{j}$ and the corresponding eigenfunctions of the associated Lax equation. The nonsingular $n$-positon solutions of the focusing mKdV equation are obtained in the special limit $lambda_{j}rightarrowlambda_{1}$, from the corresponding $n$-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the $n$-positon solution into $n$ single-soliton solutions, the trajectories, and the corresponding phase shifts of the multi-positons are also investigated.
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/el liptic $N$-soliton solutions for higher order KdV equations is the same as that of the original KdV equation. Pointing out that the difference is only the time dependence, we find $N$-soliton solutions of higher order KdV equations can be constructed from those of the original KdV equation by properly replacing the time-dependence. We discuss that there always exist elliptic solutions for all higher order KdV equations.
The theory of inverse scattering is developed to study the initial-value problem for the modified matrix Korteweg-de Vries (mmKdV) equation with the $2mtimes2m$ $(mgeq 1)$ Lax pairs under the nonzero boundary conditions at infinity. In the direct pro blem, by introducing a suitable uniform transformation we establish the proper complex $z$-plane in order to discuss the Jost eigenfunctions, scattering matrix and their analyticity and symmetry of the equation. Moreover the asymptotic behavior of the Jost functions and scattering matrix needed in the inverse problem are analyzed via Wentzel-Kramers-Brillouin expansion. In the inverse problem, the generalized Riemann-Hilbert problem of the mmKdV equation is first established by using the analyticity of the modified eigenfunctions and scattering coefficients. The reconstruction formula of potential function with reflection-less case is derived by solving this Riemann-Hilbert problem and using the scattering data. In addition the dynamic behavior of the solutions for the focusing mmKdV equation including one- and two- soliton solutions are presented in detail under the the condition that the potential is scalar and the $2times2$ symmetric matrix. Finally, we provide some detailed proofs and weak version of trace formulas to show that the asymptotic phase of the potential and the scattering data.
Using the integrability of the sinh-Gordon equation, we demonstrate the spectral stability of its elliptic solutions. By constructing a Lyapunov functional using higher-order conserved quantities of the sinh-Gordon equation, we show that these ellipt ic solutions are orbitally stable with respect to subharmonic perturbations of arbitrary period.
The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we chara cterize the Lax spectrum for the double-periodic solutions and analyze rogue waves arising on their background. Magnification of the rogue waves is studied numerically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا