ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the coadjoint orbits of a Lie algebra in terms of Cartan class. In fact, the tangent space to a coadjoint orbit $mathcal{O}(alpha)$ at the point $alpha$ corresponds to the characteristic space associated to the left invariant form;$alpha$ an d its dimension is the even part of the Cartan class of $alpha$. We apply this remark to determine Lie algebras such that all the nontrivial orbits (nonreduced to a point) have the same dimension, in particular when this dimension is 2 or 4. We determine also the Lie algebras of dimension $2n$ or $2n+1$ having an orbit of dimension $2n$.
The set HLie(n) of the n-dimensional Hom-Lie algebras over an algebraically closed field of characteristic zero is provided with a structure of algebraic subvariety of the affine plane of dimension n^2(n-1)/2}. For n=3, these two sets coincide, for n =4 it is an hypersurface in K^{24}. For n>4, we describe the scheme of polynomial equations which define HLie(n). We determine also what are the classes of Hom-Lie algebras which are P-algebras where P is a binary quadratic operads.
We study symplectic structures on nilpotent Lie algebras. Since the classification of nilpotent Lie algebras in any dimension seems to be a crazy dream, we approach this study in case of 2-step nilpotent Lie algebras (in this sub-case also, the class ification fo the dimension greater than 8 seems very difficult), using not a classification but a description of subfamilies associated with the characteristic sequence. We begin with the dimension $8$, first step where the classification becomes difficult.
The classification of complex of real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example the nilpotent Lie algebras are classified only up to the dimension 7. Moreover, to recognize a given Lie algebra in a classification list is not so easy. In this work we propose a different approach to this problem. We determine families for some fixed invariants, the classification follows by a deformation process or contraction process. We focus on the case of 2 and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology of this type of algebras and the algebras which are rigid regarding this cohomology. Other $p$-step nilpotent Lie algebras are obtained by contraction of the rigid ones.
The notion of $Gamma$-symmetric space is a natural generalization of the classical notion of symmetric space based on $Z_2$-grading of Lie algebras. In our case, we consider homogeneous spaces $G/H$ such that the Lie algebra $g$ of $G$ admits a $Gamm a$-grading where $Gamma$ is a finite abelian group. In this work we study Riemannian metrics and Lorentzian metrics on the Heisenberg group $mathbb{H}_3$ adapted to the symmetries of a $Gamma$-symmetric structure on $mathbb{H}_3$. We prove that the classification of $z$-symmetric Riemannian and Lorentzian metrics on $mathbb{H}_3$ corresponds to the classification of left-invariant Riemannian and Lorentzian metrics, up to isometry. We study also the $Z_2^k$-symmetric structures on $G/H$ when $G$ is the $(2p+1)$-dimensional Heisenberg group for $k geq 1$. This gives examples of non riemannian symmetric spaces. When $k geq 1$, we show that there exists a family of flat and torsion free affine connections adapted to the $Z_2^k$-symmetric structures.
We are interested in the class, in the Elie Cartan sense, of left invariant forms on a Lie group. We construct the class of Lie algebras provided with a contact form and classify the frobeniusian Lie algebras up to a contraction. We also study forms which are invariant by a subgroup. We show that the simple group SL(2n,R) which doesnt admit left invariant contact form, yet admits a contact form which is invariant by a maximal compact subgroup. We determine also Pfaffian forms on the Heisenberg $3$-dimensional group invariant by a subgroup and obtain the Transport Equation.
We classify, up to isomorphism, gradings by abelian groups on nilpotent filiform Lie algebras of nonzero rank. In case of rank 0, we describe conditions to obtain non trivial $Z_k$-gradings.
We classify, up to isomorphism, the 2-dimensional algebras over a field K. We focuse also on the case of characteristic 2, identifying the matrices of GL(2,F_2) with the elements of the symmetric group S_3. The classification is then given by the stu dy of the orbits of this group on a 3-dimensional plane, viewed as a Fano plane. As applications, we establish classifications of Jordan algebras, algebras of Lie type or Hom-Associative algebras.
We investigate Lie algebras whose Lie bracket is also an associative or cubic associative multiplication to characterize the class of nilpotent Lie algebras with a nilindex equal to 2 or 3. In particular we study the class of 2-step nilpotent Lie alg ebras, their deformations and we compute the cohomology which parametrize the deformations in this class.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا