ﻻ يوجد ملخص باللغة العربية
We study symplectic structures on nilpotent Lie algebras. Since the classification of nilpotent Lie algebras in any dimension seems to be a crazy dream, we approach this study in case of 2-step nilpotent Lie algebras (in this sub-case also, the classification fo the dimension greater than 8 seems very difficult), using not a classification but a description of subfamilies associated with the characteristic sequence. We begin with the dimension $8$, first step where the classification becomes difficult.
We investigate Lie algebras whose Lie bracket is also an associative or cubic associative multiplication to characterize the class of nilpotent Lie algebras with a nilindex equal to 2 or 3. In particular we study the class of 2-step nilpotent Lie alg
The classification of complex of real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example the nilpotent Lie algebras are classified only up to the dimension 7. Moreover, to recognize a given Lie algebra
The symplectic structures on $3$-Lie algebras and metric symplectic $3$-Lie algebras are studied. For arbitrary $3$-Lie algebra $L$, infinite many metric symplectic $3$-Lie algebras are constructed. It is proved that a metric $3$-Lie algebra $(A, B)$
Let $mathfrak{sp}_{2n}(mathbb {K})$ be the symplectic Lie algebra over an algebraically closed field of characteristic zero. We prove that for any nonzero nilpotent element $X in mathfrak{sp}_{2n}(mathbb {K})$ there exists a nilpotent element $Y in m
In this paper, first we introduce the notion of a quadratic Lie-Yamaguti algebra and show that the invariant bilinear form in a quadratic Lie-Yamaguti algebra induces an isomorphism between the adjoint representation and the coadjoint representation.