Let $L$ be a Lie algebra of Block type over $C$ with basis ${L_{alpha,i},|,alpha,iinZ}$ and brackets $[L_{alpha,i},L_{beta,j}]=(beta(i+1)-alpha(j+1))L_{alpha+beta,i+j}$. In this paper, we shall construct a formal distribution Lie algebra of $L$. Then
we decide its conformal algebra $B$ with $C[partial]$-basis ${L_alpha(w),|,alphainZ}$ and $lambda$-brackets $[L_alpha(w)_lambda L_beta(w)]=(alphapartial+(alpha+beta)lambda)L_{alpha+beta}(w)$. Finally, we give a classification of free intermediate series $B$-modules.
Let $mathfrak{sp}_{2n}(mathbb {K})$ be the symplectic Lie algebra over an algebraically closed field of characteristic zero. We prove that for any nonzero nilpotent element $X in mathfrak{sp}_{2n}(mathbb {K})$ there exists a nilpotent element $Y in m
athfrak{sp}_{2n}(mathbb {K})$ such that $X$ and $Y$ generate $mathfrak{sp}_{2n}(mathbb {K})$.
We study symplectic structures on nilpotent Lie algebras. Since the classification of nilpotent Lie algebras in any dimension seems to be a crazy dream, we approach this study in case of 2-step nilpotent Lie algebras (in this sub-case also, the class
ification fo the dimension greater than 8 seems very difficult), using not a classification but a description of subfamilies associated with the characteristic sequence. We begin with the dimension $8$, first step where the classification becomes difficult.
Consider the special linear Lie algebra $mathfrak{sl}_n(mathbb {K})$ over an infinite field of characteristic different from $2$. We prove that for any nonzero nilpotent $X$ there exists a nilpotent $Y$ such that the matrices $X$ and $Y$ generate the Lie algebra $mathfrak{sl}_n(mathbb {K})$.
In the present paper we describe Leibniz algebras with three-dimensional Euclidean Lie algebra $mathfrak{e}(2)$ as its liezation. Moreover, it is assumed that the ideal generated by the squares of elements of an algebra (denoted by $I$) as a right $m
athfrak{e}(2)$-module is associated to representations of $mathfrak{e}(2)$ in $mathfrak{sl}_2({mathbb{C}})oplus mathfrak{sl}_2({mathbb{C}}), mathfrak{sl}_3({mathbb{C}})$ and $mathfrak{sp}_4(mathbb{C})$. Furthermore, we present the classification of Leibniz algebras with general Euclidean Lie algebra ${mathfrak{e(n)}}$ as its liezation $I$ being an $(n+1)$-dimensional right ${mathfrak{e(n)}}$-module defined by transformations of matrix realization of $mathfrak{e(n)}.$ Finally, we extend the notion of a Fock module over Heisenberg Lie algebra to the case of Diamond Lie algebra $mathfrak{D}_k$ and describe the structure of Leibniz algebras with corresponding Lie algebra $mathfrak{D}_k$ and with the ideal $I$ considered as a Fock $mathfrak{D}_k$-module.