ترغب بنشر مسار تعليمي؟ اضغط هنا

Examples of nonalgebraic nilpotent Lie algebra

187   0   0.0 ( 0 )
 نشر من قبل Elisabeth Remm
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe some examples of non abelian nilpotent Lie algebras which are not algebraic.



قيم البحث

اقرأ أيضاً

Let $L$ be a Lie algebra of Block type over $C$ with basis ${L_{alpha,i},|,alpha,iinZ}$ and brackets $[L_{alpha,i},L_{beta,j}]=(beta(i+1)-alpha(j+1))L_{alpha+beta,i+j}$. In this paper, we shall construct a formal distribution Lie algebra of $L$. Then we decide its conformal algebra $B$ with $C[partial]$-basis ${L_alpha(w),|,alphainZ}$ and $lambda$-brackets $[L_alpha(w)_lambda L_beta(w)]=(alphapartial+(alpha+beta)lambda)L_{alpha+beta}(w)$. Finally, we give a classification of free intermediate series $B$-modules.
Let $mathfrak{sp}_{2n}(mathbb {K})$ be the symplectic Lie algebra over an algebraically closed field of characteristic zero. We prove that for any nonzero nilpotent element $X in mathfrak{sp}_{2n}(mathbb {K})$ there exists a nilpotent element $Y in m athfrak{sp}_{2n}(mathbb {K})$ such that $X$ and $Y$ generate $mathfrak{sp}_{2n}(mathbb {K})$.
We study symplectic structures on nilpotent Lie algebras. Since the classification of nilpotent Lie algebras in any dimension seems to be a crazy dream, we approach this study in case of 2-step nilpotent Lie algebras (in this sub-case also, the class ification fo the dimension greater than 8 seems very difficult), using not a classification but a description of subfamilies associated with the characteristic sequence. We begin with the dimension $8$, first step where the classification becomes difficult.
Consider the special linear Lie algebra $mathfrak{sl}_n(mathbb {K})$ over an infinite field of characteristic different from $2$. We prove that for any nonzero nilpotent $X$ there exists a nilpotent $Y$ such that the matrices $X$ and $Y$ generate the Lie algebra $mathfrak{sl}_n(mathbb {K})$.
In the present paper we describe Leibniz algebras with three-dimensional Euclidean Lie algebra $mathfrak{e}(2)$ as its liezation. Moreover, it is assumed that the ideal generated by the squares of elements of an algebra (denoted by $I$) as a right $m athfrak{e}(2)$-module is associated to representations of $mathfrak{e}(2)$ in $mathfrak{sl}_2({mathbb{C}})oplus mathfrak{sl}_2({mathbb{C}}), mathfrak{sl}_3({mathbb{C}})$ and $mathfrak{sp}_4(mathbb{C})$. Furthermore, we present the classification of Leibniz algebras with general Euclidean Lie algebra ${mathfrak{e(n)}}$ as its liezation $I$ being an $(n+1)$-dimensional right ${mathfrak{e(n)}}$-module defined by transformations of matrix realization of $mathfrak{e(n)}.$ Finally, we extend the notion of a Fock module over Heisenberg Lie algebra to the case of Diamond Lie algebra $mathfrak{D}_k$ and describe the structure of Leibniz algebras with corresponding Lie algebra $mathfrak{D}_k$ and with the ideal $I$ considered as a Fock $mathfrak{D}_k$-module.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا