We classify, up to isomorphism, gradings by abelian groups on nilpotent filiform Lie algebras of nonzero rank. In case of rank 0, we describe conditions to obtain non trivial $Z_k$-gradings.
We classify, up to isomorphism, all gradings by an arbitrary abelian group on simple finitary Lie algebras of linear transformations (special linear, orthogonal and symplectic) on infinite-dimensional vector spaces over an algebraically closed field of characteristic different from 2.
For a given abelian group G, we classify the isomorphism classes of G-gradings on the simple restricted Lie algebras of types W(m;1) and S(m;1) (m>=2), in terms of numerical and group-theoretical invariants. Our main tool is automorphism group scheme
s, which we determine for the simple restricted Lie algebras of types S(m;1) and H(m;1). The ground field is assumed to be algebraically closed of characteristic p>3.
We show that there exists a constant K such that for any PI- algebra W and any nondegenerate G-grading on W where G is any group (possibly infinite), there exists an abelian subgroup U of G with $[G : U] leq exp(W)^K$. A G-grading $W = bigoplus_{g in
G}W_g$ is said to be nondegenerate if $W_{g_1}W_{g_2}... W_{g_r} eq 0$ for any $r geq 1$ and any $r$ tuple $(g_1, g_2,..., g_r)$ in $G^r$.
In this paper we consider gradings by a finite abelian group $G$ on the Lie algebra $mathfrak{sl}_n(F)$ over an algebraically closed field $F$ of characteristic different from 2 and not dividing $n$.
For any abelian group $G$, we classify up to isomorphism all $G$-gradings on the classical central simple Lie algebras, except those of type $D_4$, over the field of real numbers (or any real closed field).