ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that, for any n, there are m-outcome quantum correlations, with m>n, which are stronger than any nonsignaling correlation produced from selecting among n-outcome measurements. As a consequence, for any n, there are m-outcome quantum measureme nts that cannot be constructed by selecting locally from the set of n-outcome measurements. This is a property of the set of measurements in quantum theory that is not mandatory for general probabilistic theories. We also show that this prediction can be tested through high-precision Bell-type experiments and identify past experiments providing evidence that some of these strong correlations exist in nature. Finally, we provide a modified version of quantum theory restricted to having at most n-outcome quantum measurements.
We solve the problem of whether a set of quantum tests reveals state-independent contextuality and use this result to identify the simplest set of the minimal dimension. We also show that identifying state-independent contextuality graphs [R. Ramanat han and P. Horodecki, Phys. Rev. Lett. 112, 040404 (2014)] is not sufficient for revealing state-independent contextuality.
212 - Matthias Kleinmann 2014
We define a simple rule that allows to describe sequences of projective measurements for a broad class of generalized probabilistic models. This class embraces quantum mechanics and classical probability theory, but, for example, also the hypothetica l Popescu-Rohrlich box. For quantum mechanics, the definition yields the established Luderss rule, which is the standard rule how to update the quantum state after a measurement. In the general case it can be seen as the least disturbing or most coherent way to perform sequential measurements. As example we show that Spekkenss toy model is an instance of our definition. We also demonstrate the possibility of strong post-quantum correlations as well as the existence of triple-slit correlations for certain non-quantum toy models.
What singles out quantum mechanics as the fundamental theory of Nature? Here we study local measurements in generalised probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalisation of Dvoretzkys theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.
Contextuality is a natural generalization of nonlocality which does not need composite systems or spacelike separation and offers a wider spectrum of interesting phenomena. Most notably, in quantum mechanics there exist scenarios where the contextual behavior is independent of the quantum state. We show that the quest for an optimal inequality separating quantum from classical noncontextual correlations in an state-independent manner admits an exact solution, as it can be formulated as a linear program. We introduce the noncontextuality polytope as a generalization of the locality polytope, and apply our method to identify two different tight optimal inequalities for the most fundamental quantum scenario with state-independent contextuality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا