ﻻ يوجد ملخص باللغة العربية
What singles out quantum mechanics as the fundamental theory of Nature? Here we study local measurements in generalised probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalisation of Dvoretzkys theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.
Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone $C$ and its dual $C^*$. We show that whether some one-way communication complexity problems can be solved wit
Various inequalities (Boole inequality, Chung-Erdos inequality, Frechet inequality) for Kolmogorov (classical) probabilities are considered. Quantum counterparts of these inequalities are introduced, which have an extra `quantum correction term, and
Bit-commitment is a fundamental cryptographic task, in which Alice commits a bit to Bob such that she cannot later change the value of the bit, while, simultaneously, the bit is hidden from Bob. It is known that ideal bit-commitment is impossible wit
We introduce quantum correlations measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of non-additive entrop
In this article, we show a sufficient and necessary condition for locally distinguishable bipartite states via one-way local operations and classical communication (LOCC). With this condition, we present some minimal structures of one-way LOCC indist