ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum correlations are stronger than all nonsignaling correlations produced by n-outcome measurements

280   0   0.0 ( 0 )
 نشر من قبل Matthias Kleinmann
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that, for any n, there are m-outcome quantum correlations, with m>n, which are stronger than any nonsignaling correlation produced from selecting among n-outcome measurements. As a consequence, for any n, there are m-outcome quantum measurements that cannot be constructed by selecting locally from the set of n-outcome measurements. This is a property of the set of measurements in quantum theory that is not mandatory for general probabilistic theories. We also show that this prediction can be tested through high-precision Bell-type experiments and identify past experiments providing evidence that some of these strong correlations exist in nature. Finally, we provide a modified version of quantum theory restricted to having at most n-outcome quantum measurements.



قيم البحث

اقرأ أيضاً

How to understand the set of correlations admissible in nature is one outstanding open problem in the core of the foundations of quantum theory. Here we take a complementary viewpoint to the device-independent approach, and explore the correlations t hat physical theories may feature when restricted by some particular constraints on their measurements. We show that demanding that a theory exhibits a composite measurement imposes a hierarchy of constraints on the structure of its sets of states and effects, which translate to a hierarchy of constraints on the allowed correlations themselves. We moreover focus on the particular case where one demands the existence of an entangled measurement that reads out the parity of local fiducial measurements. By formulating a non-linear Optimisation Problem, and semidefinite relaxations of it, we explore the consequences of the existence of such a parity reading measurement for violations of Bell inequalities. In particular, we show that in certain situations this assumption has surprisingly strong consequences, namely, that Tsirelsons bound can be recovered.
178 - C. Jebarathinam 2014
We introduce the measures, Bell discord (BD) and Mermin discord (MD), to characterize bipartite quantum correlations in the context of nonsignaling (NS) polytopes. These measures divide the full NS polytope into four regions depending on whether BD a nd/or MD is zero. This division of the NS polytope allows us to obtain a 3-decomposition that any bipartite box with two binary inputs and two binary outputs can be decomposed into Popescu-Rohrlich (PR) box, a maximally local box, and a local box with BD and MD equal to zero. BD and MD quantify two types of nonclassicality of correlations arising from all quantum correlated states which are neither classical-quantum states nor quantum-classical states. BD and MD serve us the semi-device-independent witnesses of nonclassicality of local boxes in that nonzero value of these measures imply incompatible measurements and nonzero quantum discord only when the dimension of the measured states is fixed. The 3-decomposition serves us to isolate the origin of the two types of nonclassicality into a PR-box and a maximally local box which is related to EPR-steering, respectively. We consider a quantum polytope that has an overlap with all the four regions of the full NS polytope to figure out the constraints of quantum correlations.
91 - Peter Bierhorst 2020
Many three-party correlations, including some that are commonly described as genuinely tripartite nonlocal, can be simulated by a network of underlying subsystems that display only bipartite nonsignaling nonlocal behavior. Quantum mechanics predicts three-party correlations that admit no such simulation, suggesting there a
It is well-known that in a Bell experiment, the observed correlation between measurement outcomes -- as predicted by quantum theory -- can be stronger than that allowed by local causality, yet not fully constrained by the principle of relativistic ca usality. In practice, the characterization of the set Q of quantum correlations is often carried out through a converging hierarchy of outer approximations. On the other hand, some subsets of Q arising from additional constraints [e.g., originating from quantum states having positive-partial-transposition (PPT) or being finite-dimensional maximally entangled] turn out to be also amenable to similar numerical characterizations. How then, at a quantitative level, are all these naturally restricted subsets of nonsignaling correlations different? Here, we consider several bipartite Bell scenarios and numerically estimate their volume relative to that of the set of nonsignaling correlations. Among others, our findings allow us to (1) gain insight on (i) the effectiveness of the so-called Q1 and the almost quantum set in approximating Q, (ii) the rate of convergence among the first few levels of the aforementioned outer approximations, (iii) the typicality of the phenomenon of more nonlocality with less entanglement, and (2) identify a Bell scenario whose Bell violation by PPT states might be experimentally viable.
We introduce quantum correlations measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of non-additive entrop ies. In this way, we overcome the issue of the artificial increasing of the value of quantum correlations measures based on non-additive entropies when an uncorrelated ancilla is appended to the system without changing the computability of our entropic correlations measures with respect to the previous ones. Moreover, we recover as limiting cases the quantum correlations measures based on von Neumann and Renyi entropies (i.e., additive entropies), for which the adjustment factor becomes trivial. In addition, we distinguish between total and semiquantum correlations and obtain some relations between them. Finally, we obtain analytical expressions of the entropic correlations measures for typical quantum bipartite systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا