ﻻ يوجد ملخص باللغة العربية
Contextuality is a natural generalization of nonlocality which does not need composite systems or spacelike separation and offers a wider spectrum of interesting phenomena. Most notably, in quantum mechanics there exist scenarios where the contextual behavior is independent of the quantum state. We show that the quest for an optimal inequality separating quantum from classical noncontextual correlations in an state-independent manner admits an exact solution, as it can be formulated as a linear program. We introduce the noncontextuality polytope as a generalization of the locality polytope, and apply our method to identify two different tight optimal inequalities for the most fundamental quantum scenario with state-independent contextuality.
We solve the problem of whether a set of quantum tests reveals state-independent contextuality and use this result to identify the simplest set of the minimal dimension. We also show that identifying state-independent contextuality graphs [R. Ramanat
We show that, regardless of the dimension of the Hilbert space, there exists no set of rays revealing state-independent contextuality with less than 13 rays. This implies that the set proposed by Yu and Oh in dimension three [Phys. Rev. Lett. 108, 03
We report the first state-independent experimental test of quantum contextuality on a single photonic qutrit (three-dimensional system), based on a recent theoretical proposal [Yu and Oh, Phys. Rev. Lett. 108, 030402 (2012)]. Our experiment spotlight
We argue that the experiment described in the recent Letter by Zu et al. [Phys. Rev. Lett. 109, 150401 (2012); arXiv:1207.0059v1] does not allow to make conclusions about contextuality, since the measurement of the observables as well as the preparat
This is a reply to the comment from E. Amselem et al. on our paper (Phys. Rev. Lett. 109, 150401 (2012), arXiv:1207.0059).