ترغب بنشر مسار تعليمي؟ اضغط هنا

The phase behavior of liquids confined in a slit geometry does not reveal a crossover from a three to a two-dimensional behavior as the gap size decreases. Indeed, the prototypical two-dimensional hexatic phase only occurs in liquids confined to a mo nolayer. Here, we demonstrate that the dimensionality crossover is apparent in the lateral size dependence of the relaxation dynamics of confined liquids, developing a Debye model for the density of vibrational states of confined systems and performing extensive numerical simulations. In confined systems, Mermin-Wagner fluctuations enhance the amplitude of vibrational motion or Debye-Waller factor by a quantity scaling as the inverse gap width and proportional to the logarithm of the aspect ratio, as a clear signature of a two-dimensional behaviour. As the temperature or lateral system size increases, the crossover to a size-independent relaxation dynamics occurs when structural relaxation takes place before the vibrational modes with the longest wavelength develop.
The phase diagram of the prototypical two-dimensional Lennard-Jones system, while extensively investigated, is still debated. In particular, there are controversial results in the literature as concern the existence of the hexatic phase and the melti ng scenario. Here, we study the phase behaviour of 2D LJ particles via large-scale numerical simulations. We demonstrate that at high temperature, when the attraction in the potential plays a minor role, melting occurs via a continuous solid-hexatic transition followed by a first-order hexatic-fluid transition. As the temperature decreases, the density range where the hexatic phase occurs shrinks so that at low-temperature melting occurs via a first-order liquid-solid transition. The temperature where the hexatic phase disappears is well above the liquid-gas critical temperature. The evolution of the density of topological defects confirms this scenario.
Disordered hyperuniformity is a description of hidden correlations in point distributions revealed by an anomalous suppression in fluctuations of local density at various coarse-graining length scales. In the absorbing phase of models exhibiting an a ctive-absorbing state transition, this suppression extends up to a hyperuniform length scale that diverges at the critical point. Here, we demonstrate the existence of additional many-body correlations beyond hyperuniformity. These correlations are hidden in the higher moments of the probability distribution of the local density, and extend up to a longer length scale with a faster divergence than the hyperuniform length on approaching the critical point. Our results suggest that a hidden order beyond hyperuniformity may generically be present in complex disordered systems.
Two-dimensional systems may admit a hexatic phase and hexatic-liquid transitions of different natures. The determination of their phase diagrams proved challenging, and indeed those of hard-disks, hard regular polygons, and inverse power-law potentia ls, have been only recently clarified. In this context, the role of attractive forces is currently speculative, despite their prevalence at both the molecular and colloidal scale. Here we demonstrate, via numerical simulations, that attraction promotes a discontinuous melting scenario with no hexatic phase. At high-temperature, Lennard-Jones particles and attractive polygons follow the shape-dominated melting scenario observed in hard-disks and hard polygons, respectively. Conversely, all systems melt via a first-order transition with no hexatic phase at low temperature, where attractive forces dominate. The intermediate temperature melting scenario is shape-dependent. Our results suggest that, in colloidal experiments, the tunability of the strength of the attractive forces allows for the observation of different melting scenario in the same system.
The identification of the different phases of a two-dimensional (2d) system, which might be in solid, hexatic, or liquid, requires the accurate determination of the correlation function of the translational and of the bond-orientational order paramet ers. According to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory, in the solid phase the translational correlation function decays algebraically, as a consequence of the Mermin-Wagner long-wavelength fluctuations. Recent results have however reported an exponential-like decay. By revisiting different definitions of the translational correlation function commonly used in the literature, here we clarify that the observed exponential-like decay in the solid phase results from an inaccurate determination of the symmetry axis of the solid; the expected power-law behaviour is recovered when the symmetry axis is properly identified. We show that, contrary to the common assumption, the symmetry axis of a 2d solid is not fixed by the direction of its global bond-orientational parameter, and introduce an approach allowing to determine the symmetry axis from a real space analysis of the sample.
The suppression of density fluctuations at different length scales is the hallmark of hyperuniformity. However, its existence and significance in jammed solids is still a matter of debate. We explore the presence of this hidden order in a manybody in teracting model known to exhibit a rigidity transition, and find that in contrary to exisiting speculations, density fluctuations in the rigid phase are only suppressed up to a finite lengthscale. This length scale grows and diverges at the critical point of the rigidity transition, such that the system is hyperuniform in the fluid phase. This suggests that hyperuniformity is a feature generically absent in jammed solids. Surprisingly, corresponding fluctuations in geometrical properties of the model are found to be strongly suppressed over an even greater but still finite lengthscale, indicating that the system self organizes in preference to suppress geometrical fluctuations at the expense of incurring density fluctuations.
The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.
We analyze the classical problem of the stochastic dynamics of a particle confined in a periodic potential, through the so called Ilin and Khasminskii model, with a novel semi-analytical approach. Our approach gives access to the transient and the as ymptotic dynamics in all damping regimes, which are difficult to investigate in the usual Brownian model. We show that the crossover from the overdamped to the underdamped regime is associated with the loss of a typical time scale and of a typical length scale, as signaled by the divergence of the probability distribution of a certain dynamical event. In the underdamped regime, normal diffusion coexists with a non Gaussian displacement probability distribution for a long transient, as recently observed in a variety of different systems. We rationalize the microscopic physical processes leading to the non-Gaussian behavior, as well as the timescale to recover the Gaussian statistics. The theoretical results are supported by numerical calculations and are compared to those obtained for the Brownian model.
We investigate the glass and the jamming transitions of hard spheres in finite dimensions $d$, through a revised cell theory, that combines the free volume and the Random First Order Theory (RFOT). Recent results show that in infinite dimension the i deal glass transition and jamming transitions are distinct, while based on our theory we argue that they indeed coincide for finite $d$. As a consequence, jamming results into a percolation transition described by RFOT, with a static length diverging with exponent $ u=2/d$, which we verify through finite size scaling, and standard critical exponents $alpha = 0$, $beta = 0$ and $gamma = 2$ independent on $d$.
We determine the rate of escape from a potential well, and the diffusion coefficient in a periodic potential, of a random walker that moves under the influence of the potential in between successive collisions with the heat bath. In the overdamped li mit, both the escape rate and the diffusion coefficient coincide with those of a Langevin particle. Conversely, in the underdamped limit the two dynamics have a different temperature dependence. In particular, at low temperature the random walk has a smaller escape rate, but a larger diffusion coefficient.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا