ﻻ يوجد ملخص باللغة العربية
Two-dimensional systems may admit a hexatic phase and hexatic-liquid transitions of different natures. The determination of their phase diagrams proved challenging, and indeed those of hard-disks, hard regular polygons, and inverse power-law potentials, have been only recently clarified. In this context, the role of attractive forces is currently speculative, despite their prevalence at both the molecular and colloidal scale. Here we demonstrate, via numerical simulations, that attraction promotes a discontinuous melting scenario with no hexatic phase. At high-temperature, Lennard-Jones particles and attractive polygons follow the shape-dominated melting scenario observed in hard-disks and hard polygons, respectively. Conversely, all systems melt via a first-order transition with no hexatic phase at low temperature, where attractive forces dominate. The intermediate temperature melting scenario is shape-dependent. Our results suggest that, in colloidal experiments, the tunability of the strength of the attractive forces allows for the observation of different melting scenario in the same system.
The phase diagram of two-dimensional continuous particle systems is studied using Event-Chain Monte Carlo. For soft disks with repulsive power-law interactions $propto r^{-n}$ with $n gtrsim 6$, the recently established hard-disk melting scenario ($n
The Shastry-Sutherland model, which consists of a set of spin 1/2 dimers on a 2-dimensional square lattice, is simple and soluble, but captures a central theme of condensed matter physics by sitting precariously on the quantum edge between isolated,
We determine exactly the short-distance effective potential between two guest charges immersed in a two-dimensional two-component charge-asymmetric plasma composed of positively ($q_1 = +1$) and negatively ($q_2 = -1/2$) charged point particles. The
We provide a quantitative analysis of all kinds of topological defects present in 2D passive and active repulsive disk systems. We show that the passage from the solid to the hexatic is driven by the unbinding of dislocations. Instead, although we se
We consider an off-lattice liquid crystal pair potential in strictly two dimensions. The potential is purely repulsive and short-ranged. Nevertheless, by means of a single parameter in the potential, the system is shown to undergo a first-order phase