ﻻ يوجد ملخص باللغة العربية
The phase behavior of liquids confined in a slit geometry does not reveal a crossover from a three to a two-dimensional behavior as the gap size decreases. Indeed, the prototypical two-dimensional hexatic phase only occurs in liquids confined to a monolayer. Here, we demonstrate that the dimensionality crossover is apparent in the lateral size dependence of the relaxation dynamics of confined liquids, developing a Debye model for the density of vibrational states of confined systems and performing extensive numerical simulations. In confined systems, Mermin-Wagner fluctuations enhance the amplitude of vibrational motion or Debye-Waller factor by a quantity scaling as the inverse gap width and proportional to the logarithm of the aspect ratio, as a clear signature of a two-dimensional behaviour. As the temperature or lateral system size increases, the crossover to a size-independent relaxation dynamics occurs when structural relaxation takes place before the vibrational modes with the longest wavelength develop.
It was recently shown that the real part of the frequency-dependent fluidity for several glass-forming liquids of different chemistry conforms to the prediction of the random barrier model (RBM) devised for ac electrical conduction in disordered soli
We theoretically investigate structural relaxation and activated diffusion of glass-forming liquids at different pressures using both the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory and molecular dynamics (MD) simulation. An ext
A lattice model is presented for the simulation of dynamics in polymeric systems. Each polymer is represented as a chain of monomers, residing on a sequence of nearest-neighbor sites of a face-centered-cubic lattice. The polymers are self- and mutual
We develop the elastically collective nonlinear Langevin equation theory of bulk relaxation of glass-forming liquids to investigate molecular mobility under compression conditions. The applied pressure restricts more molecular motion and therefore si
Via molecular dynamics simulations of a generic glass former in the supercooled and normal liquid states, it is shown that spatial correlations of strain fluctuations exhibit a crossover from the well-established power-law $sim 1/r^3$-decay at long w