ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the stellar population properties of the IRAC-detected $6 lesssim z lesssim 10$ galaxy candidates from the Spitzer UltRa Faint SUrvey Program (SURFS UP). Using the Lyman Break selection technique, we find a total of 16 new galaxy candidates at $6 lesssim z lesssim 10$ with $S/N geq 3$ in at least one of the IRAC $3.6mu$m and $4.5mu$m bands. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of $sim 1.2$--$5.5$. We find that the IRAC-detected $6 lesssim z lesssim 10$ sample is likely not a homogeneous galaxy population: some are relatively massive (stellar mass as high as $4 times 10^9,M_{odot}$) and evolved (age $lesssim 500$ Myr) galaxies, while others are less massive ($M_{text{stellar}}sim 10^8,M_{odot}$) and very young ($sim 10$ Myr) galaxies with strong nebular emission lines that boost their rest-frame optical fluxes. We identify two Ly$alpha$ emitters in our sample from the Keck DEIMOS spectra, one at $z_{text{Ly}alpha}=6.76$ (in RXJ1347) and one at $z_{text{Ly}alpha}=6.32$ (in MACS0454). We show that IRAC $[3.6]-[4.5]$ color, when combined with photometric redshift, can be used to identify galaxies likely with strong nebular emission lines within certain redshift windows.
SURFSUP is a joint Spitzer and HST Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z >~ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest frame optical light, which only Spitzer can probe for sources at z >~ 7, for a large enough sample of typical galaxies. Our program consists of 550 hours of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ~30 hours exposure time in both 3.6$mu$m and 4.5$mu$m in the central 4 arcmin x 4 arcmin field and ~15 hours in the flanking fields. This results in 3-$sigma$ sensitivity limits of ~26.6 and ~26.2AB magnitudes for the central field in the IRAC 3.6 and 4.5$mu$m bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z >~ 7 sources (using a z=9.5 galaxy behind MACSJ1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical PSF models. In the future we plan to release these data products for the entire survey.
We present the first results of our spectroscopic follow-up of 6.5 < z < 10 candidate galaxies behind clusters of galaxies. We report the spectroscopic confirmation of an intrinsically faint Lyman break galaxy (LBG) identified as a z 850LP-band dropo ut behind the Bullet Cluster. We detect an emission line at {lambda} = 9412 {AA} at >5{sigma} significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Ly{alpha} at z = 6.740 pm 0.003. The integrated line flux is f = (0.7 pm 0.1 pm 0.3) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Ly{alpha} flux detected at these redshifts. Given the magnification of {mu} = 3.0 pm 0.2 the intrinsic (corrected for lensing) flux is f^int = (0.23 pm 0.03 pm 0.10 pm 0.02) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (additional uncertainty due to magnification), which is ~2-3 times fainter than other such measurements in z ~ 7 galaxies. The intrinsic H 160W-band magnitude of the object is m^int(H_160W)=27.57 pm 0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe.
We report spectroscopic confirmation and high-resolution infrared imaging of a z=2.79 triply-imaged galaxy behind the Bullet Cluster. This source, a Spitzer-selected luminous infrared galaxy (LIRG), is confirmed via polycyclic aromatic hydrocarbon (P AH) features using the Spitzer Infrared Spectrograph (IRS) and resolved with HST WFC3 imaging. In this galaxy, which with a stellar mass of M*=4e9 Msun is one of the two least massive ones studied with IRS at z>2, we also detect H_2 S(4) and H_2 S(5) pure rotational lines (at 3.1 sigma and 2.1 sigma) - the first detection of these molecular hydrogen lines in a high-redshift galaxy. From the molecular hydrogen lines we infer an excitation temperature T=377+68-84 K. The detection of these lines indicates that the warm molecular gas mass is 6(+36-4)% of the stellar mass and implies the likely existence of a substantial reservoir of cold molecular gas in the galaxy. Future spectral observations at longer wavelengths with facilities like the Herschel Space Observatory, the Large Millimeter Telescope, and the Atacama Pathfinder EXperiment (APEX) thus hold the promise of precisely determining the total molecular gas mass. Given the redshift, and using refined astrometric positions from the high resolution imaging, we also update the magnification estimate and derived fundamental physical properties of this system. The previously published values for total infrared luminosity, star formation rate, and dust temperature are confirmed modulo the revised magnification; however we find that PAH emission is roughly a factor of five stronger than would be predicted by the relations between the total infrared and PAH luminosity reported for SMGs and starbursts in Pope et al. (2008).
We constrain the physical nature of dark matter using the newly identified massive merging galaxy cluster MACSJ0025.4-1222. As was previously shown by the example of the Bullet Cluster (1E0657-56), such systems are ideal laboratories for detecting is olated dark matter, and distinguishing between cold dark matter (CDM) and other scenarios (e.g. self-interacting dark matter, alternative gravity theories). MACSJ0025.4-1222 consists of two merging subclusters of similar richness at z=0.586. We measure the distribution of X-ray emitting gas from Chandra X-ray data and find it to be clearly displaced from the distribution of galaxies. A strong (information from highly distorted arcs) and weak (using weakly distorted background galaxies) gravitational lensing analysis based on Hubble Space Telescope observations and Keck arc spectroscopy confirms that the subclusters have near-equal mass. The total mass distribution in each of the subclusters is clearly offset (at >4sigma significance) from the peak of the hot X-ray emitting gas (the main baryonic component), but aligned with the distribution of galaxies. We measure the fractions of mass in hot gas (0.09^{+0.07}_{-0.03}) and stars (0.010^{+0.007}_{-0.004}), consistent with those of typical clusters, finding that dark matter is the dominant contributor to the gravitational field. Under the assumption that the subclusters experienced a head-on collision in the plane of the sky, we obtain an order-of-magnitude estimate of the dark matter self-interaction cross-section of sigma/m < 4cm^2/g, re-affirming the results from the Bullet Cluster on the collisionless nature of dark matter.
The galaxy cluster RX J1347-1145 is one of the most X-ray luminous and most massive clusters known. Its extreme mass makes it a prime target for studying issues addressing cluster formation and cosmology. In this paper we present new high-resolution HST/ACS and Chandra X-ray data. The high resolution and sensitivity of ACS enabled us to detect and quantify several new multiply imaged sources, we now use a total of eight for the strong lensing analysis. Combining this information with shape measurements of weak lensing sources in the central regions of the cluster, we derive a high-resolution, absolutely-calibrated mass map. This map provides the best available quantification of the total mass of the central part of the cluster to date. We compare the reconstructed mass with that inferred from the new Chandra X-ray data, and conclude that both mass estimates agree extremely well in the observed region, namely within 400 / h_70 kpc of the cluster center. In addition we study the major baryonic components (gas and stars) and hence derive the dark matter distribution in the center of the cluster. We find that the dark matter and baryons are both centered on the BCG within the uncertainties (alignment is better than <10 kpc). We measure the corresponding 1-D profiles and find that dark matter distribution is consistent with both NFW and cored profiles, indicating that a more extended radial analysis is needed to pinpoint the concentration parameter, and hence the inner slope of the dark matter profile.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا