ﻻ يوجد ملخص باللغة العربية
We study the stellar population properties of the IRAC-detected $6 lesssim z lesssim 10$ galaxy candidates from the Spitzer UltRa Faint SUrvey Program (SURFS UP). Using the Lyman Break selection technique, we find a total of 16 new galaxy candidates at $6 lesssim z lesssim 10$ with $S/N geq 3$ in at least one of the IRAC $3.6mu$m and $4.5mu$m bands. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of $sim 1.2$--$5.5$. We find that the IRAC-detected $6 lesssim z lesssim 10$ sample is likely not a homogeneous galaxy population: some are relatively massive (stellar mass as high as $4 times 10^9,M_{odot}$) and evolved (age $lesssim 500$ Myr) galaxies, while others are less massive ($M_{text{stellar}}sim 10^8,M_{odot}$) and very young ($sim 10$ Myr) galaxies with strong nebular emission lines that boost their rest-frame optical fluxes. We identify two Ly$alpha$ emitters in our sample from the Keck DEIMOS spectra, one at $z_{text{Ly}alpha}=6.76$ (in RXJ1347) and one at $z_{text{Ly}alpha}=6.32$ (in MACS0454). We show that IRAC $[3.6]-[4.5]$ color, when combined with photometric redshift, can be used to identify galaxies likely with strong nebular emission lines within certain redshift windows.
SURFSUP is a joint Spitzer and HST Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z >~ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure
We present Spitzer/IRAC observations of nine $z$-band dropouts highly magnified (2<mu<12) by the Bullet Cluster. We combine archival imaging with our Exploratory program (SURFS UP), which results in a total integration time of ~30 hr per IRAC band. W
We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z~4 Lyman-break galaxies (LBGs). LBGs are key tracers of the high-redshift star formation history and important sources of UV photons that ionized the inter
In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z~4 are the most strongly clus
Aims. The aim of this work is to constrain the evolution of the fraction of Lya emitters among UV selected star forming galaxies at 2<z<6, and to measure the stellar escape fraction of Lya photons over the same redshift range. Methods. We exploit the