ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer UltRa Faint SUrvey Program (SURFS UP) I: An Overview

83   0   0.0 ( 0 )
 نشر من قبل Maru\\v{s}a Brada\\v{c}
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SURFSUP is a joint Spitzer and HST Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z >~ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest frame optical light, which only Spitzer can probe for sources at z >~ 7, for a large enough sample of typical galaxies. Our program consists of 550 hours of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ~30 hours exposure time in both 3.6$mu$m and 4.5$mu$m in the central 4 arcmin x 4 arcmin field and ~15 hours in the flanking fields. This results in 3-$sigma$ sensitivity limits of ~26.6 and ~26.2AB magnitudes for the central field in the IRAC 3.6 and 4.5$mu$m bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z >~ 7 sources (using a z=9.5 galaxy behind MACSJ1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical PSF models. In the future we plan to release these data products for the entire survey.

قيم البحث

اقرأ أيضاً

We study the stellar population properties of the IRAC-detected $6 lesssim z lesssim 10$ galaxy candidates from the Spitzer UltRa Faint SUrvey Program (SURFS UP). Using the Lyman Break selection technique, we find a total of 16 new galaxy candidates at $6 lesssim z lesssim 10$ with $S/N geq 3$ in at least one of the IRAC $3.6mu$m and $4.5mu$m bands. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of $sim 1.2$--$5.5$. We find that the IRAC-detected $6 lesssim z lesssim 10$ sample is likely not a homogeneous galaxy population: some are relatively massive (stellar mass as high as $4 times 10^9,M_{odot}$) and evolved (age $lesssim 500$ Myr) galaxies, while others are less massive ($M_{text{stellar}}sim 10^8,M_{odot}$) and very young ($sim 10$ Myr) galaxies with strong nebular emission lines that boost their rest-frame optical fluxes. We identify two Ly$alpha$ emitters in our sample from the Keck DEIMOS spectra, one at $z_{text{Ly}alpha}=6.76$ (in RXJ1347) and one at $z_{text{Ly}alpha}=6.32$ (in MACS0454). We show that IRAC $[3.6]-[4.5]$ color, when combined with photometric redshift, can be used to identify galaxies likely with strong nebular emission lines within certain redshift windows.
We present Spitzer/IRAC observations of nine $z$-band dropouts highly magnified (2<mu<12) by the Bullet Cluster. We combine archival imaging with our Exploratory program (SURFS UP), which results in a total integration time of ~30 hr per IRAC band. W e detect (>3sigma) in both IRAC bands the brightest of these high-redshift galaxies, with [3.6]=23.80+-0.28 mag, [4.5]=23.78+-0.25 mag, and (H-[3.6])=1.17+-0.32 mag. The remaining eight galaxies are undetected to [3.6]~26.4 mag and [4.5]~26.0 mag with stellar masses of ~5x10^7 M_sol. The detected galaxy has an estimated magnification of mu=12+-4, which implies this galaxy has an ultraviolet luminosity of L_1500~0.3 L*_{z=7} --- the lowest luminosity individual source detected in IRAC at z>7. By modeling the broadband photometry, we estimate the galaxy has an intrinsic star-formation rate of SFR~1.3 M_sol/yr and stellar mass of M~2x10^9 M_sol, which gives a specific star-formation rate of sSFR~0.7 Gyr^-1. If this galaxy had sustained this star-formation rate since z~20, it could have formed the observed stellar mass (to within a factor of ~2), we also discuss alternate star-formation histories and argue the exponentially-increasing model is unlikely. Finally, based on the intrinsic star-formation rate, we estimate this galaxy has a likely [C II] flux of <f_[C II]> = 10^{-17} erg/s/cm2.
We present a survey of the mass surface-density of spiral disks, motivated by outstanding uncertainties in rotation-curve decompositions. Our method exploits integral-field spectroscopy to measure stellar and gas kinematics in nearly face-on galaxies sampled at 515, 660, and 860 nm, using the custom-built SparsePak and PPak instruments. A two-tiered sample, selected from the UGC, includes 146 nearly face-on galaxies, with B<14.7 and disk scale-lengths between 10 and 20 arcsec, for which we have obtained H-alpha velocity-fields; and a representative 46-galaxy subset for which we have obtained stellar velocities and velocity dispersions. Based on re-calibration of extant photometric and spectroscopic data, we show these galaxies span factors of 100 in L(K) (0.03 < L/L(K)* < 3), 8 in L(B)/L(K), 10 in R-band disk central surface-brightness, with distances between 15 and 200 Mpc. The survey is augmented by 4-70 micron Spitzer IRAC and MIPS photometry, ground-based UBVRIJHK photometry, and HI aperture-synthesis imaging. We outline the spectroscopic analysis protocol for deriving precise and accurate line-of-sight stellar velocity dispersions. Our key measurement is the dynamical disk-mass surface-density. Star-formation rates and kinematic and photometric regularity of galaxy disks are also central products of the study. The survey is designed to yield random and systematic errors small enough (i) to confirm or disprove the maximum-disk hypothesis for intermediate-type disk galaxies, (ii) to provide an absolute calibration of the stellar mass-to-light ratio well below uncertainties in present-day stellar-population synthesis models, and (iii) to make significant progress in defining the shape of dark halos in the inner regions of disk galaxies.
Nearby resolved dwarf galaxies provide excellent opportunities for studying the dust-producing late stages of stellar evolution over a wide range of metallicity (-2.7 < [Fe/H] < -1.0). Here, we describe DUSTiNGS (DUST in Nearby Galaxies with Spitzer) : a 3.6 and 4.5 micron post-cryogen Spitzer Space Telescope imaging survey of 50 dwarf galaxies within 1.5 Mpc that is designed to identify dust-producing Asymptotic Giant Branch (AGB) stars and massive stars. The survey includes 37 dwarf spheroidal, 8 dwarf irregular, and 5 transition-type galaxies. This near-complete sample allows for the building of statistics on these rare phases of stellar evolution over the full metallicity range. The photometry is >75% complete at the tip of the Red Giant Branch for all targeted galaxies, with the exception of the crowded inner regions of IC 10, NGC 185, and NGC 147. This photometric depth ensures that the majority of the dust-producing stars, including the thermally-pulsing AGB stars, are detected in each galaxy. The images map each galaxy to at least twice the half-light radius to ensure that the entire evolved star population is included and to facilitate the statistical subtraction of background and foreground contamination, which is severe at these wavelengths. In this overview, we describe the survey, the data products, and preliminary results. We show evidence for the presence of dust-producing AGB stars in 8 of the targeted galaxies, with metallicities as low as [Fe/H] = -1.9, suggesting that dust production occurs even at low metallicity.
80 - Luis C. Ho 2011
The Carnegie-Irvine Galaxy Survey (CGS) is a long-term program to investigate the photometric and spectroscopic properties of a statistically complete sample of 605 bright (B_T < 12.9 mag), southern (Dec. < 0) galaxies using the facilities at Las Cam panas Observatory. This paper, the first in a series, outlines the scientific motivation of CGS, defines the sample, and describes the technical aspects of the optical broadband (BVRI) imaging component of the survey, including details of the observing program, data reduction procedures, and calibration strategy. The overall quality of the images is quite high, in terms of resolution (median seeing 1), field of view (8.9 X 8.9), and depth (median limiting surface brightness 27.5, 26.9, 26.4, and 25.3 mag/arcsec2 in the B, V, R, and I bands, respectively). We prepare a digital image atlas showing several different renditions of the data, including three-color composites, star-cleaned images, stacked images to enhance faint features, structure maps to highlight small-scale features, and color index maps suitable for studying the spatial variation of stellar content and dust. In anticipation of upcoming science analyses, we tabulate an extensive set of global properties for the galaxy sample. These include optical isophotal and photometric parameters derived from CGS itself, as well as published information on multiwavelength (ultraviolet, U-band, near-infrared, far-infrared) photometry, internal kinematics (central stellar velocity dispersions, disk rotational velocities), environment (distance to nearest neighbor, tidal parameter, group or cluster membership), and H I content. The digital images and science-level data products will be made publicly accessible to the community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا