ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic Confirmation of a z=6.740 Galaxy behind the Bullet Cluster

74   0   0.0 ( 0 )
 نشر من قبل Maru\\v{s}a Brada\\v{c}
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first results of our spectroscopic follow-up of 6.5 < z < 10 candidate galaxies behind clusters of galaxies. We report the spectroscopic confirmation of an intrinsically faint Lyman break galaxy (LBG) identified as a z 850LP-band dropout behind the Bullet Cluster. We detect an emission line at {lambda} = 9412 {AA} at >5{sigma} significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Ly{alpha} at z = 6.740 pm 0.003. The integrated line flux is f = (0.7 pm 0.1 pm 0.3) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Ly{alpha} flux detected at these redshifts. Given the magnification of {mu} = 3.0 pm 0.2 the intrinsic (corrected for lensing) flux is f^int = (0.23 pm 0.03 pm 0.10 pm 0.02) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (additional uncertainty due to magnification), which is ~2-3 times fainter than other such measurements in z ~ 7 galaxies. The intrinsic H 160W-band magnitude of the object is m^int(H_160W)=27.57 pm 0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe.

قيم البحث

اقرأ أيضاً

We report spectroscopic confirmation and high-resolution infrared imaging of a z=2.79 triply-imaged galaxy behind the Bullet Cluster. This source, a Spitzer-selected luminous infrared galaxy (LIRG), is confirmed via polycyclic aromatic hydrocarbon (P AH) features using the Spitzer Infrared Spectrograph (IRS) and resolved with HST WFC3 imaging. In this galaxy, which with a stellar mass of M*=4e9 Msun is one of the two least massive ones studied with IRS at z>2, we also detect H_2 S(4) and H_2 S(5) pure rotational lines (at 3.1 sigma and 2.1 sigma) - the first detection of these molecular hydrogen lines in a high-redshift galaxy. From the molecular hydrogen lines we infer an excitation temperature T=377+68-84 K. The detection of these lines indicates that the warm molecular gas mass is 6(+36-4)% of the stellar mass and implies the likely existence of a substantial reservoir of cold molecular gas in the galaxy. Future spectral observations at longer wavelengths with facilities like the Herschel Space Observatory, the Large Millimeter Telescope, and the Atacama Pathfinder EXperiment (APEX) thus hold the promise of precisely determining the total molecular gas mass. Given the redshift, and using refined astrometric positions from the high resolution imaging, we also update the magnification estimate and derived fundamental physical properties of this system. The previously published values for total infrared luminosity, star formation rate, and dust temperature are confirmed modulo the revised magnification; however we find that PAH emission is roughly a factor of five stronger than would be predicted by the relations between the total infrared and PAH luminosity reported for SMGs and starbursts in Pope et al. (2008).
165 - M. D. Lehnert 2010
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sight-lines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the Cosmic Microwave Background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionised through a complex process that was completed about a billion years after the Big Bang, by redshift z~6. Detecting ionizing Ly-alpha photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionisation. Here we report the detection of Ly-a photons emitted less than 600 million years after the Big Bang. UDFy-38135539 is at a redshift z=8.5549+-0.0002, which is greater than those of the previously known most distant objects, at z=8.2 and z=6.97. We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.
We present Atacama Large Millimeter/submillimeter Array measurements of the `Cosmic Seagull, a strongly magnified galaxy at z=2.7779 behind the Bullet Cluster. We report CO(3-2) and continuum 344~$mu$m (rest-frame) data at one of the highest differen tial magnifications ever recorded at submillimeter wavelengths ($mu$ up to ~50), facilitating a characterization of the kinematics of a rotational curve in great detail (at ~620 pc resolution in the source plane). We find no evidence for a decreasing rotation curve, from which we derive a dynamical mass of ($6.3pm0.7)times10^{10} M_{odot}$ within $r = 2.6pm0.1$ kpc. The discovery of a third, unpredicted, image provides key information for a future improvement of the lensing modeling of the Bullet Cluster and allows a measure of the stellar mass, $1.6^{+1.9}_{-0.86}times10^{10} M_{odot}$, unaffected by strong differential magnification. The baryonic mass is is expected to be dominated by the molecular gas content ($f_{gas} leq 80 pm 20$ %) based on an $M_{H_2}$ mass estimated from the difference between dynamical and stellar masses. The star formation rate is estimated via the spectral energy distribution ($SFR = 190 pm 10 M_{odot}/yr$), implying a molecular gas depletion time of $0.25pm0.08$ Gyr.
We present evidence for a Spitzer-selected luminous infrared galaxy (LIRG) behind the Bullet Cluster. The galaxy, originally identified in IRAC photometry as a multiply imaged source, has a spectral energy distribution consistent with a highly extinc ted (A_V~3.3), strongly star-forming galaxy at z=2.7. Using our strong gravitational lensing model presented in Bradac et al. (2006), we find that the magnifications are 10 to 50 for the three images of the galaxy. The implied infrared luminosity is consistent with the galaxy being a LIRG, with a stellar mass of M_*~2e11 M_Sun and a star formation rate of ~90 M_Sun/yr. With lensed fluxes at 24 microns of 0.58 mJy and 0.39 mJy in the two brightest images, this galaxy presents a unique opportunity for detailed study of an obscured starburst with star fomation rate comparable to that of L* galaxies at z>2.
We present VIsible Multi-Object Spectrograph (VIMOS) observations of a z 6 galaxy quintuply imaged by the Frontier Fields galaxy cluster RXC J2248.7-4431 (z=0.348). This sub-L^*, high-z galaxy has been recently discovered by Monna et al. (2013) using dropout techniques with the 16-band HST photometry acquired as part of the Cluster Lensing And Supernova survey with Hubble (CLASH). Obtained as part of the CLASH-VLT survey, the VIMOS medium-resolution spectra of this source show a very faint continuum between ~8700A and ~9300A and a prominent emission line at 8643A, which can be readily identified with Lyman-alpha at z=6.110. The emission line exhibits an asymmetric profile, with a more pronounced red wing. The rest-frame equivalent width of the line is EW=79+-10A. After correcting for magnification, the star-formation rate (SFR) estimated from the Lya line is SFR(Lya)=11 M_{sol}/yr and that estimated from the UV data is SFR(UV)=3 M_{sol}/yr. We estimate that the effective radius of the source is R_e<~0.4 kpc, which implies a star formation surface mass density Sigma_{SFR}>6 M_{sol}/yr/kpc^2 and, using the Kennicutt-Schmidt relation, a gas surface mass density Sigma_{gas}>10^3 M_{sol}/pc^2. Our results support the idea that this magnified, distant galaxy is a young and compact object with 0.4 L^* at z=6, with comparable amount of mass in gas and stars. Future follow-up observations with ALMA will provide valuable insight into the SFR and molecular gas content of this source. In the spirit of the Frontier Fields initiative, we also publish the redshifts of several multiply imaged sources and other background objects which will help improving the strong lensing model of this galaxy cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا