ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that several classes of polyhedra are joined by a sequence of O(1) refolding steps, where each refolding step unfolds the current polyhedron (allowing cuts anywhere on the surface and allowing overlap) and folds that unfolding into exactly th e next polyhedron; in other words, a polyhedron is refoldable into another polyhedron if they share a common unfolding. Specifically, assuming equal surface area, we prove that (1) any two tetramonohedra are refoldable to each other, (2) any doubly covered triangle is refoldable to a tetramonohedron, (3) any (augmented) regular prismatoid and doubly covered regular polygon is refoldable to a tetramonohedron, (4) any tetrahedron has a 3-step refolding sequence to a tetramonohedron, and (5) the regular dodecahedron has a 4-step refolding sequence to a tetramonohedron. In particular, we obtain at most 6-step refolding sequence between any pair of Platonic solids, applying (5) for the dodecahedron and (1) and/or (2) for all other Platonic solids. As far as the authors know, this is the first result about common unfolding involving the regular dodecahedron.
We prove that any finite polyhedral manifold in 3D can be continuously flattened into 2D while preserving intrinsic distances and avoiding crossings, answering a 19-year-old open problem, if we extend standard folding models to allow for countably in finite creases. The most general cases previously known to be continuously flattenable were convex polyhedra and semi-orthogonal polyhedra. For non-orientable manifolds, even the existence of an instantaneous flattening (flat folded state) is a new result. Our solution extends a method for flattening semi-orthogonal polyhedra: slice the polyhedron along parallel planes and flatten the polyhedral strips between consecutive planes. We adapt this approach to arbitrary nonconvex polyhedra by generalizing strip flattening to nonorthogonal corners and slicing along a countably infinite number of parallel planes, with slices densely approaching every vertex of the manifold. We also show that the area of the polyhedron that needs to support moving creases (which are necessary for closed polyhedra by the Bellows Theorem) can be made arbitrarily small.
We present new examples of topologically convex edge-ununfoldable polyhedra, i.e., polyhedra that are combinatorially equivalent to convex polyhedra, yet cannot be cut along their edges and unfolded into one planar piece without overlap. One family o f examples is acutely triangulated, i.e., every face is an acute triangle. Another family of examples is stacked, i.e., the result of face-to-face gluings of tetrahedra. Both families achieve another natural property, which we call very ununfoldable: for every $k$, there is an example such that every nonoverlapping multipiece edge unfolding has at least $k$ pieces.
It is unknown whether every polycube (polyhedron constructed by gluing cubes face-to-face) has an edge unfolding, that is, cuts along edges of the cubes that unfolds the polycube to a single nonoverlapping polygon in the plane. Here we construct poly cubes that have no *edge zipper unfolding* where the cut edges are further restricted to form a path.
We prove that path puzzles with complete row and column information--or equivalently, 2D orthogonal discrete tomography with Hamiltonicity constraint--are strongly NP-complete, ASP-complete, and #P-complete. Along the way, we newly establish ASP-comp leteness and #P-completeness for 3-Dimensional Matching and Numerical 3-Dimensional Matching.
Inspired by the Japanese game Pachinko, we study simple (perfectly inelastic collisions) dynamics of a unit ball falling amidst point obstacles (pins) in the plane. A classic example is that a checkerboard grid of pins produces the binomial distribut ion, but what probability distributions result from different pin placements? In the 50-50 model, where the pins form a subset of this grid, not all probability distributions are possible, but surprisingly the uniform distribution is possible for ${1,2,4,8,16}$ possible drop locations. Furthermore, every probability distribution can be approximated arbitrarily closely, and every dyadic probability distribution can be divided by a suitable power of $2$ and then constructed exactly (along with extra junk outputs). In a more general model, if a ball hits a pin off center, it falls left or right accordingly. Then we prove a universality result: any distribution of $n$ dyadic probabilities, each specified by $k$ bits, can be constructed using $O(n k^2)$ pins, which is close to the information-theoretic lower bound of $Omega(n k)$.
We describe a general family of curved-crease folding tessellations consisting of a repeating lens motif formed by two convex curved arcs. The third author invented the first such design in 1992, when he made both a sketch of the crease pattern and a vinyl model (pictured below). Curve fitting suggests that this initial design used circular arcs. We show that in fact the curve can be chosen to be any smooth convex curve without inflection point. We identify the ruling configuration through qualitative properties that a curved folding satisfies, and prove that the folded form exists with no additional creases, through the use of differential geometry.
When can $t$ terminal pairs in an $m times n$ grid be connected by $t$ vertex-disjoint paths that cover all vertices of the grid? We prove that this problem is NP-complete. Our hardness result can be compared to two previous NP-hardness proofs: Lynch s 1975 proof without the ``cover all vertices constraint, and Kotsuma and Takenagas 2010 proof when the paths are restricted to have the fewest possible corners within their homotopy class. The latter restriction is a common form of the famous Nikoli puzzle emph{Numberlink}; our problem is another common form of Numberlink, sometimes called emph{Zig-Zag Numberlink} and popularized by the smartphone app emph{Flow Free}.
When can a plane graph with prescribed edge lengths and prescribed angles (from among ${0,180^circ, 360^circ$}) be folded flat to lie in an infinitesimally thin line, without crossings? This problem generalizes the classic theory of single-vertex fla t origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to $360^circ$, and every face of the graph must itself be flat foldable. This characterization leads to a linear-time algorithm for testing flat foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states.
Suppose that we are given two independent sets $I_b$ and $I_r$ of a graph such that $|I_b|=|I_r|$, and imagine that a token is placed on each vertex in $I_b$. Then, the sliding token problem is to determine whether there exists a sequence of independ ent sets which transforms $I_b$ into $I_r$ so that each independent set in the sequence results from the previous one by sliding exactly one token along an edge in the graph. This problem is known to be PSPACE-complete even for planar graphs, and also for bounded treewidth graphs. In this paper, we thus study the problem restricted to trees, and give the following three results: (1) the decision problem is solvable in linear time; (2) for a yes-instance, we can find in quadratic time an actual sequence of independent sets between $I_b$ and $I_r$ whose length (i.e., the number of token-slides) is quadratic; and (3) there exists an infinite family of instances on paths for which any sequence requires quadratic length.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا