ﻻ يوجد ملخص باللغة العربية
We prove that path puzzles with complete row and column information--or equivalently, 2D orthogonal discrete tomography with Hamiltonicity constraint--are strongly NP-complete, ASP-complete, and #P-complete. Along the way, we newly establish ASP-completeness and #P-completeness for 3-Dimensional Matching and Numerical 3-Dimensional Matching.
We study the complexity of symmetric assembly puzzles: given a collection of simple polygons, can we translate, rotate, and possibly flip them so that their interior-disjoint union is line symmetric? On the negative side, we show that the problem is
In this paper, we show that deciding rigid foldability of a given crease pattern using all creases is weakly NP-hard by a reduction from Partition, and that deciding rigid foldability with optional creases is strongly NP-hard by a reduction from 1-in
We introduce a computational origami problem which we call the segment folding problem: given a set of $n$ line-segments in the plane the aim is to make creases along all segments in the minimum number of folding steps. Note that a folding might alte
Given a set P of n points in the plane, a unit-disk graph G_{r}(P) with respect to a radius r is an undirected graph whose vertex set is P such that an edge connects two points p, q in P if the Euclidean distance between p and q is at most r. The len
Deciding whether a family of disjoint line segments in the plane can be linked into a simple polygon (or a simple polygonal chain) by adding segments between their endpoints is NP-hard.