ﻻ يوجد ملخص باللغة العربية
We present new examples of topologically convex edge-ununfoldable polyhedra, i.e., polyhedra that are combinatorially equivalent to convex polyhedra, yet cannot be cut along their edges and unfolded into one planar piece without overlap. One family of examples is acutely triangulated, i.e., every face is an acute triangle. Another family of examples is stacked, i.e., the result of face-to-face gluings of tetrahedra. Both families achieve another natural property, which we call very ununfoldable: for every $k$, there is an example such that every nonoverlapping multipiece edge unfolding has at least $k$ pieces.
Starting with the unsolved Durers problem of edge-unfolding a convex polyhedron to a net, we specialize and generalize (a) the types of cuts permitted, and (b) the polyhedra shapes, to highlight both advances established and which problems remain open.
We introduce polyhedra circuits. Each polyhedra circuit characterizes a geometric region in $mathbb{R}^d$. They can be applied to represent a rich class of geometric objects, which include all polyhedra and the union of a finite number of polyhedra.
A convex polyhedron $P$ is $k$-equiprojective if all of its orthogonal projections, i.e., shadows, except those parallel to the faces of $P$ are $k$-gon for some fixed value of $k$. Since 1968, it is an open problem to construct all equiprojective po
We prove that every positively-weighted tree T can be realized as the cut locus C(x) of a point x on a convex polyhedron P, with T weights matching C(x) lengths. If T has n leaves, P has (in general) n+1 vertices. We show there are in fact a continuu
The construction of an unbounded polyhedron from a jagged convex cap is described, and several of its properties discussed, including its relation to Alexandrovs limit angle.