ﻻ يوجد ملخص باللغة العربية
We describe a general family of curved-crease folding tessellations consisting of a repeating lens motif formed by two convex curved arcs. The third author invented the first such design in 1992, when he made both a sketch of the crease pattern and a vinyl model (pictured below). Curve fitting suggests that this initial design used circular arcs. We show that in fact the curve can be chosen to be any smooth convex curve without inflection point. We identify the ruling configuration through qualitative properties that a curved folding satisfies, and prove that the folded form exists with no additional creases, through the use of differential geometry.
This paper presents the computational challenge on differential geometry and topology that happened within the ICLR 2021 workshop Geometric and Topological Representation Learning. The competition asked participants to provide creative contributions
We prove that any finite polyhedral manifold in 3D can be continuously flattened into 2D while preserving intrinsic distances and avoiding crossings, answering a 19-year-old open problem, if we extend standard folding models to allow for countably in
Liquid crystal elastomers/glasses are active materials that can have significant metric change upon stimulation. The local metric change is determined by its director pattern that describes the ordering direction and hence the direction of contractio
Four-dimensional (4D) printing, a new technology emerged from additive manufacturing (3D printing), is widely known for its capability of programming post-fabrication shape-changing into artifacts. Fused deposition modeling (FDM)-based 4D printing, i
The dimensionality of an electronic quantum system is decisive for its properties. In 1D electrons form a Luttinger liquid and in 2D they exhibit the quantum Hall effect. However, very little is known about the behavior of electrons in non-integer, i