ترغب بنشر مسار تعليمي؟ اضغط هنا

Solid state quantum condensates can differ from other condensates, such as Helium, ultracold atomic gases, and superconductors, in that the condensing quasiparticles have relatively short lifetimes, and so, as for lasers, external pumping is required to maintain a steady state. In this chapter we present a non-equilibrium path integral approach to condensation in a dissipative environment and apply it to microcavity polaritons, driven out of equilibrium by coupling to multiple baths, describing pumping and decay. Using this, we discuss the relation between non-equilibrium polariton condensation, lasing, and equilibrium condensation.
We study the properties of a binary microcavity polariton superfluid coherently injected by two lasers. The crossover from the supersonic to subsonic regime, where motion is frictionless, is described by evaluating the Bogoliubov spectra. We show tha t according to the Landau criteria, the coupling between the two components precludes the existence of superfluidity just for one component but not for the other. By analysing the drag force exerted on a defect, we give a recipe to experimentally address the crossover from the supersonic to the subsonic regime.
We study the properties of propagating polariton wave-packets and their connection to the stability of doubly charged vortices. Wave-packet propagation and related photoluminescence spectra exhibit a rich behaviour dependent on the excitation regime. We show that, because of the non-quadratic polariton dispersion, doubly charged vortices are stable only when initiated in wave-packets propagating at small velocities. Vortices propagating at larger velocities, or those imprinted directly into the polariton optical parametric oscillator (OPO) signal and idler are always unstable to splitting.
We study non-equilibrium polariton superfluids in the optical parametric oscillator (OPO) regime using a two-component Gross-Pitaevskii equation with pumping and decay. We identify a regime above OPO threshold, where the system undergoes spontaneous symmetry breaking and is unstable towards vortex formation without any driving rotation. Stable vortex solutions differ from metastable ones; the latter can persist in OPO superfluids but can only be triggered externally. Both spontaneous and triggered vortices are characterised by a generalised healing length, specified by the OPO parameters only.
Fast sweep projection onto Feshbach molecules has been widely used as a probe of fermionic condensates. By determining the exact dynamics of a pair of atoms in time varying magnetic fields, we calculate the number of condensed and noncondensed molecu les created after fast magnetic field sweeps from the BCS to the BEC side of the resonances in $^{40}$K and $^{6}$Li, for different sweep rates and a range of initial and final fields. We discuss the relation between the initial fermionic condensate fraction and the molecular condensate fraction measured after the sweep.
We analyse the spatial and temporal coherence properties of a two-dimensional and finite sized polariton condensate with parameters tailored to the recent experiments which have shown spontaneous and thermal equilibrium polariton condensation in a Cd Te microcavity [J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, et al., Nature 443 (7110) (2006) 409]. We obtain a theoretical estimate of the thermal length, the lengthscale over which full coherence effectively exists (and beyond which power-law decay of correlations in a two-dimensional condensate occurs), of the order of 5 micrometers. In addition, the exponential decay of temporal coherence predicted for a finite size system is consistent with that found in the experiment. From our analysis of the luminescence spectra of the polariton condensate, taking into account pumping and decay, we obtain a dispersionless region at small momenta of the order of 4 degrees. In addition, we determine the polariton linewidth as a function of the pump power. Finally, we discuss how, by increasing the exciton-photon detuning, it is in principle possible to move the threshold for condensation from a region of the phase diagram where polaritons can be described as a weakly interacting Bose gas to a region where instead the composite nature of polaritons becomes important.
The first realization of a polariton condensate was recently achieved in a CdTe microcavity [Kasprzak et al., Nature 443, 409 (2006)]. We compare the experimental phase boundaries, for various detunings and cryostat temperatures, with those found the oretically from a model which accounts for features of microcavity polaritons such as reduced dimensionality, internal composite structure, disorder in the quantum wells, polariton-polariton interactions, and finite lifetime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا