ﻻ يوجد ملخص باللغة العربية
Solid state quantum condensates can differ from other condensates, such as Helium, ultracold atomic gases, and superconductors, in that the condensing quasiparticles have relatively short lifetimes, and so, as for lasers, external pumping is required to maintain a steady state. In this chapter we present a non-equilibrium path integral approach to condensation in a dissipative environment and apply it to microcavity polaritons, driven out of equilibrium by coupling to multiple baths, describing pumping and decay. Using this, we discuss the relation between non-equilibrium polariton condensation, lasing, and equilibrium condensation.
We investigate formation of Bose-Einstein condensates under non-equilibrium conditions using numerical simulations of the three-dimensional Gross-Pitaevskii equation. For this, we set initial random weakly nonlinear excitations and the forcing at hig
We present a comprehensive analysis of critical behavior in the driven-dissipative Bose condensation transition in three spatial dimensions. Starting point is a microscopic description of the system in terms of a many-body quantum master equation, wh
We report the formation of Bose-Einstein condensates into non-equilibrium states. Our condensates are much longer than equilibrium condensates with the same number of atoms, show strong phase fluctuations, and have a dynamical evolution similar to th
Coherence is a defining feature of quantum condensates. These condensates are inherently multimode phenomena and in the macroscopic limit it becomes extremely difficult to resolve populations of individual modes and the coherence between them. In thi
Open many-body quantum systems have recently gained renewed interest in the context of quantum information science and quantum transport with biological clusters and ultracold atomic gases. A series of results in diverse setups is presented, based on