ترغب بنشر مسار تعليمي؟ اضغط هنا

Frictionless flow in a binary polariton superfluid

80   0   0.0 ( 0 )
 نشر من قبل Francesca Maria Marchetti
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the properties of a binary microcavity polariton superfluid coherently injected by two lasers. The crossover from the supersonic to subsonic regime, where motion is frictionless, is described by evaluating the Bogoliubov spectra. We show that according to the Landau criteria, the coupling between the two components precludes the existence of superfluidity just for one component but not for the other. By analysing the drag force exerted on a defect, we give a recipe to experimentally address the crossover from the supersonic to the subsonic regime.

قيم البحث

اقرأ أيضاً

We report the formation of a ring-shaped array of vortices after injection of angular momentum in a polariton superfluid. The angular momentum is injected by a $ell= 8$ Laguerre-Gauss beam, whereas the global rotation of the fluid is hindered by a na rrow Gaussian beam placed at its center. In the linear regime a spiral interference pattern containing phase defects is visible. In the nonlinear (superfluid) regime, the interference disappears and the vortices nucleate as a consequence of the angular momentum quantization. The radial position of the vortices evolves freely in the region between the two pumps as a function of the density. Hydrodynamic instabilities resulting in the spontaneous nucleation of vortex-antivortex pairs when the system size is sufficiently large confirm that the vortices are not constrained by interference when nonlinearities dominate the system.
We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra in three different categories [C. Ciuti and I. Carusotto, physica status solidi (b) 242, 2224 (2005)]: linear for zero, diffusive-like for positive, and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work [E. Cancellieri et al., Phys. Rev. B 82, 224512 (2010)], where the drag was determined numerically for a finite-size defect.
In this report we demonstrate a novel concept for a planar cavity polariton beam amplifier using non-resonant excitation. In contrast to resonant excitation schemes, background carriers are injected which form excitons, providing both gain and a repu lsive potential for a polariton condensate. Using an attractive potential environment induced by a locally elongated cavity layer, the repulsive potential of the injected background carriers is compensated and a significant amplification of polariton beams is achieved without beam distortion.
Phase frustration in periodic lattices is responsible for the formation of dispersionless flat bands. The absence of any kinetic energy scale makes flat band physics critically sensitive to perturbations and interactions. We report here on the experi mental investigation of the nonlinear dynamics of cavity polaritons in the gapped flat band of a one-dimensional Lieb lattice. We observe the formation of gap solitons with quantized size and very abrupt edges, signature of the frozen propagation of switching fronts. This type of gap solitons belongs to the class of truncated Bloch waves, and had only been observed in closed systems up to now. Here the driven-dissipative character of the system gives rise to a complex multistability of the nonlinear domains generated in the flat band. These results open up interesting perspective regarding more complex 2D lattices and the generation of correlated photon phases.
We use a one-dimensional polariton fluid in a semiconductor microcavity to explore the rich nonlinear dynamics of counter-propagating interacting Bose fluids. The intrinsically driven-dissipative nature of the polariton fluid allows to use resonant p umping to impose a phase twist across the fluid. When the polariton-polariton interaction energy becomes comparable to their kinetic energy, linear interference fringes transform into a train of solitons. A novel type of bistable behavior controlled by the phase twist across the fluid is experimentally evidenced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا