ﻻ يوجد ملخص باللغة العربية
The first realization of a polariton condensate was recently achieved in a CdTe microcavity [Kasprzak et al., Nature 443, 409 (2006)]. We compare the experimental phase boundaries, for various detunings and cryostat temperatures, with those found theoretically from a model which accounts for features of microcavity polaritons such as reduced dimensionality, internal composite structure, disorder in the quantum wells, polariton-polariton interactions, and finite lifetime.
We present a comprehensive theoretical description of quantum well exciton-polaritons imbedded in a planar semiconductor microcavity. The exact non-local dielectric response of the quantum well exciton is treated in detail. The 4-spinor structure of
We investigate the statistics of microcavity polariton Bose-Einstein condensation by measuring photoluminescence dynamics from a GaAs microcavity excited by single laser excitation pulses. We directly observe fluctuations (jitter) of the polariton co
Semiconductor microcavities offer a unique system to investigate the physics of weakly interacting bosons. Their elementary excitations, polaritons--a mixture of excitons and photons--behave, in the low density limit, as bosons that can undergo a pha
We present a simple method to create an in-plane lateral potential in a semiconductor microcavity using a metal thin-film. Two types of potential are produced: a circular aperture and a one-dimensional (1D) periodic grating pattern. The amplitude of
We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profi