ترغب بنشر مسار تعليمي؟ اضغط هنا

196 - M. Feroci 2014
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolu tion of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
The Large Observatory For X-ray Timing (LOFT), currently in an assessment phase in the framework the ESA M3 Cosmic Vision programme, is an innovative medium-class mission specifically designed to answer fundamental questions about the behaviour of ma tter, in the very strong gravitational and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of ~10 m^2 at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrument will be discussed, showing the main contributions to the background and the design solutions for its reduction and control. Our results show that the current LOFT/LAD design is expected to meet its scientific requirement of a background rate equivalent to 10 mCrab in 2-30 keV, achieving about 5 mCrab in the most important 2-10 keV energy band. Moreover, simulations show an anticipated modulation of the background rate as small as 10% over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than the requirement of 1%, and actually meeting the 0.25% science goal.
The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultra-dense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m^2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPOs to year-long transient outbursts. In this paper we report the current status of the project.
138 - M. Feroci , L. Stella , A. Vacchi 2010
The high time resolution observations of the X-ray sky hold the key to a number of diagnostics of fundamental physics, some of which are unaccessible to other types of investigations, such as those based on imaging and spectroscopy. Revealing strong gravitational field effects, measuring the mass and spin of black holes and the equation of state of ultradense matter are among the goals of such observations. At present prospects for future, non-focused X-ray timing experiments following the exciting age of RXTE/PCA are uncertain. Technological limitations are unavoidably faced in the conception and development of experiments with effective area of several square meters, as needed in order to meet the scientific requirements. We are developing large-area monolithic Silicon Drift Detectors offering high time and energy resolution at room temperature, which require modest resources and operation complexity (e.g., read-out) per unit area. Based on the properties of the detector and read-out electronics that we measured in the lab, we developed a realistic concept for a very large effective area mission devoted to X-ray timing in the 2-30 keV energy range. We show that effective areas in the range of 10-15 square meters are within reach, by using a conventional spacecraft platform and launcher of the small-medium class.
106 - M. Feroci 2009
SuperAGILE is the hard X-ray monitor of the AGILE gamma ray mission, in orbit since 23$^{rd}$ April 2007. It is an imaging experiment based on a set of four independent silicon strip detectors, equipped with one-dimensional coded masks, operating in the nominal energy range 18-60 keV. The main goal of SuperAGILE is the observation of cosmic sources simultaneously with the main gamma-ray AGILE experiment, the Gamma Ray Imaging Detector (GRID). Given its $sim$steradian-wide field of view and its $sim$15 mCrab day-sensitivity, SuperAGILE is also well suited for the long-term monitoring of Galactic compact objects and the detection of bright transients. The SuperAGILE detector properties and design allow for a 6 arcmin angular resolution in each of the two independent orthogonal projections of the celestial coordinates. Photon by photon data are continuously available by the experiment telemetry, and are used to derive images and fluxes of individual sources, with integration times depending on the source intensity and position in the field of view. In this paper we report on the main scientific results achieved by SuperAGILE over its first two years in orbit, until April 2009.
The success of the SWIFT/BAT and INTEGRAL missions has definitely opened a new window for follow-up and deep study of the transient gamma-ray sky. This now appears as the access key to important progresses in the area of cosmological research and dee p understanding of the physics of compact objects. To detect in near real-time explosive events like Gamma-Ray bursts, thermonuclear flashes from Neutron Stars and other types of X-ray outbursts we have developed a concept for a wide-field gamma-ray coded mask instrument working in the range 8-200 keV, having a sensitivity of 0.4 ph cm-2 s-1 in 1s (15-150 keV) and arcmin location accuracy over a sky region as wide as 3sr. This scientific requirement can be achieved by means of two large area, high spatial resolution CZT detection planes made of arrays of relatively large (~1cm2) crystals, which are in turn read out as matrices of smaller pixels. To achieve such a wide Field-Of-View the two units can be placed at the sides of a S/C platform serving a payload with a complex of powerful X-ray instruments, as designed for the EDGE mission. The two units will be equipped with powerful signal read out system and data handling electronics, providing accurate on-board reconstruction of the source positions for fast, autonomous target acquisition by the X-ray telescopes.
GRB 070724B is the first Gamma Ray Burst localized by SuperAGILE, the hard X-ray monitor aboard the AGILE satellite. The coordinates of the event were published $sim 19$ hours after the trigger. The Swift X-Ray Telescope pointed at the SuperAGILE loc ation and detected the X-ray afterglow inside the SuperAGILE error circle. The AGILE gamma-ray Tracker and Minicalorimeter did not detect any significant gamma ray emission associated with GRB 070724B in the MeV and GeV range, neither prompt nor delayed. Searches of the optical afterglow were performed by the Swift UVOT and the Palomar automated 60-inch telescopes without any significant detection. Similarly the Very Large Array did not detect a radio afterglow. This is the first GRB event with a firm upper limit in the 100 MeV -- 30 GeV energy range, associated with an X-ray afterglow.
SuperAGILE is a coded mask experiment based on silicon microstrip detectors. It operates in the 15-45 keV nominal energy range, providing crossed one-dimensional images of the X-ray sky with an on-axis angular resolution of 6 arcmin, over a field of view in excess of 1 steradian. It was designed as the hard X-ray monitor of the AGILE space mission, a small satellite of the Italian Space Agency devoted to image the gamma-ray sky in the 30 MeV - 50 GeV energy band. The AGILE mission was launched in a low-earth orbit on 23^{rd} April 2007. In this paper we describe the SuperAGILE experiment, its construction and test processes, and its performance before flight, based on the on-ground test and calibrations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا