ترغب بنشر مسار تعليمي؟ اضغط هنا

The Large Observatory For x-ray Timing

280   0   0.0 ( 0 )
 نشر من قبل Enrico Bozzo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Feroci




اسأل ChatGPT حول البحث

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.



قيم البحث

اقرأ أيضاً

124 - R. P. Mignani 2012
High-time-resolution X-ray observations of compact objects provide direct access to strong field gravity, black hole masses and spins, and the equation of state of ultra-dense matter. LOFT, the large observatory for X-ray timing, is specifically desi gned to study the very rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars. A 10 m^2-class instrument in combination with good spectral resolution (<260 eV @ 6 keV) is required to exploit the relevant diagnostics and holds the potential to revolutionise the study of collapsed objects in our Galaxy and of the brightest supermassive black holes in active galactic nuclei. LOFT will carry two main instruments: a Large Area Detector (LAD), to be built at MSSL/UCL with the collaboration of the Leicester Space Research Centre for the collimator) and a Wide Field Monitor (WFM). The ground-breaking characteristic of the LAD (that will work in the energy range 2-30 keV) is a mass per unit surface in the range of ~10 kg/m^2, enabling an effective area of ~10 m^2 (@10 keV) at a reasonable weight and improving by a factor of ~20 over all predecessors. This will allow timing measurements of unprecedented sensitivity, allowing the capability to measure the mass and radius of neutron stars with ~5% accuracy, or to reveal blobs orbiting close to the marginally stable orbit in active galactic nuclei. In this contribution we summarise the characteristics of the LOFT instruments and give an overview of the expectations for its capabilities.
LOFT, the large observatory for X-ray timing, is a new mission concept competing with other four candidates for a launch opportunity in 2022-2024. LOFT will be performing high-time resolution X-ray observations of compact objects, combining for the f irst time an unprecedented large collecting area for X-ray photons and a spectral resolution approaching that of CCD-based X-ray instruments (down to 200 eV FWHM at 6 keV). The operating energy range is 2-80 keV. The main science goals of LOFT are the measurement of the neutron stars equation of states and the test of General Relativity in the strong field regime. The breakthrough capabilities of the instruments on-board LOFT will permit to open also new discovery windows for a wide range of Galactic and extragalactic X-ray sources. In this contribution, we provide a general description of the mission concept and summarize its main scientific capabilities.
The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultra-dense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m^2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPOs to year-long transient outbursts. In this paper we report the current status of the project.
213 - M. Feroci , L. Stella , A. Vacchi 2010
The high time resolution observations of the X-ray sky hold the key to a number of diagnostics of fundamental physics, some of which are unaccessible to other types of investigations, such as those based on imaging and spectroscopy. Revealing strong gravitational field effects, measuring the mass and spin of black holes and the equation of state of ultradense matter are among the goals of such observations. At present prospects for future, non-focused X-ray timing experiments following the exciting age of RXTE/PCA are uncertain. Technological limitations are unavoidably faced in the conception and development of experiments with effective area of several square meters, as needed in order to meet the scientific requirements. We are developing large-area monolithic Silicon Drift Detectors offering high time and energy resolution at room temperature, which require modest resources and operation complexity (e.g., read-out) per unit area. Based on the properties of the detector and read-out electronics that we measured in the lab, we developed a realistic concept for a very large effective area mission devoted to X-ray timing in the 2-30 keV energy range. We show that effective areas in the range of 10-15 square meters are within reach, by using a conventional spacecraft platform and launcher of the small-medium class.
192 - S. Zane 2014
LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-r ay timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most of the trade-offs have been closed leading to a robust and well documented design that will be re- proposed in future ESA calls. In this talk, we will summarize the characteristics of the LAD design and give an overview of the expectations for the instrument capabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا