ترغب بنشر مسار تعليمي؟ اضغط هنا

Background simulations for the Large Area Detector onboard LOFT

170   0   0.0 ( 0 )
 نشر من قبل Riccardo Campana
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Large Observatory For X-ray Timing (LOFT), currently in an assessment phase in the framework the ESA M3 Cosmic Vision programme, is an innovative medium-class mission specifically designed to answer fundamental questions about the behaviour of matter, in the very strong gravitational and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of ~10 m^2 at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrument will be discussed, showing the main contributions to the background and the design solutions for its reduction and control. Our results show that the current LOFT/LAD design is expected to meet its scientific requirement of a background rate equivalent to 10 mCrab in 2-30 keV, achieving about 5 mCrab in the most important 2-10 keV energy band. Moreover, simulations show an anticipated modulation of the background rate as small as 10% over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than the requirement of 1%, and actually meeting the 0.25% science goal.



قيم البحث

اقرأ أيضاً

The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrument for eXTP is based on the design originally proposed for the LOFT mission within the ESA context. The eXTP/LAD envisages a deployed 3.4 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we provide an overview of the LAD instrument design, including new elements with respect to the earlier LOFT configuration.
333 - D. Walton 2014
LOFT (Large Observatory for X-ray Timing) is an X-ray timing observatory that, with four other candidates, was considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. Its pointed instru ment is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30 keV range, which is designed to perform X-ray timing of compact objects with unprecedented resolution down to millisecond time scales. Although LOFT was not downselected for launch, during the assessment most of the trade-offs have been closed, leading to a robust and well documented design that will be reproposed in future ESA calls. The building block of the LAD instrument is the Module, and in this paper we summarize the rationale for the module concept, the characteristics of the module and the trade-offs/optimisations which have led to the current design.
196 - S. Zane 2014
LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-r ay timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most of the trade-offs have been closed leading to a robust and well documented design that will be re- proposed in future ESA calls. In this talk, we will summarize the characteristics of the LAD design and give an overview of the expectations for the instrument capabilities.
320 - S. Zane , D. Walton , T. Kennedy 2012
The Large Observatory for X-ray Timing (LOFT) is one of the four candidate ESA M3 missions considered for launch in the 2022 time-frame. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. The LOFT scientific payload is composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a 10 m2-class pointed instrument with 20 times the collecting area of the best past timing missions (such as RXTE) over the 2-30 keV range, which holds the capability to revolutionize studies of X-ray variability down to the millisecond time scales. Its ground-breaking characteristic is a low mass per unit surface, enabling an effective area of ~10 m^2 (@10 keV) at a reasonable weight. The development of such large but light experiment, with low mass and power per unit area, is now made possible by the recent advancements in the field of large-area silicon detectors - able to time tag an X-ray photon with an accuracy <10 {mu}s and an energy resolution of ~260 eV at 6 keV - and capillary-plate X-ray collimators. In this paper, we will summarize the characteristics of the LAD instrument and give an overview of its capabilities.
217 - M. Feroci , L. Stella , A. Vacchi 2010
The high time resolution observations of the X-ray sky hold the key to a number of diagnostics of fundamental physics, some of which are unaccessible to other types of investigations, such as those based on imaging and spectroscopy. Revealing strong gravitational field effects, measuring the mass and spin of black holes and the equation of state of ultradense matter are among the goals of such observations. At present prospects for future, non-focused X-ray timing experiments following the exciting age of RXTE/PCA are uncertain. Technological limitations are unavoidably faced in the conception and development of experiments with effective area of several square meters, as needed in order to meet the scientific requirements. We are developing large-area monolithic Silicon Drift Detectors offering high time and energy resolution at room temperature, which require modest resources and operation complexity (e.g., read-out) per unit area. Based on the properties of the detector and read-out electronics that we measured in the lab, we developed a realistic concept for a very large effective area mission devoted to X-ray timing in the 2-30 keV energy range. We show that effective areas in the range of 10-15 square meters are within reach, by using a conventional spacecraft platform and launcher of the small-medium class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا