ترغب بنشر مسار تعليمي؟ اضغط هنا

Monitoring the hard X-ray sky with SuperAGILE

106   0   0.0 ( 0 )
 نشر من قبل Marco Feroci
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Feroci




اسأل ChatGPT حول البحث

SuperAGILE is the hard X-ray monitor of the AGILE gamma ray mission, in orbit since 23$^{rd}$ April 2007. It is an imaging experiment based on a set of four independent silicon strip detectors, equipped with one-dimensional coded masks, operating in the nominal energy range 18-60 keV. The main goal of SuperAGILE is the observation of cosmic sources simultaneously with the main gamma-ray AGILE experiment, the Gamma Ray Imaging Detector (GRID). Given its $sim$steradian-wide field of view and its $sim$15 mCrab day-sensitivity, SuperAGILE is also well suited for the long-term monitoring of Galactic compact objects and the detection of bright transients. The SuperAGILE detector properties and design allow for a 6 arcmin angular resolution in each of the two independent orthogonal projections of the celestial coordinates. Photon by photon data are continuously available by the experiment telemetry, and are used to derive images and fluxes of individual sources, with integration times depending on the source intensity and position in the field of view. In this paper we report on the main scientific results achieved by SuperAGILE over its first two years in orbit, until April 2009.

قيم البحث

اقرأ أيضاً

178 - Masaru Matsuoka 2009
The MAXI (Monitor of All-sky X-ray Image) mission is the first astronomical payload to be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) on the ISS. It is scheduled for launch in the middle of 2009 to monitor all-sky X-ray obje cts on every ISS orbit. MAXI will be more powerful than any previous X-ray All Sky Monitor (ASM) payloads, being able to monitor hundreds of AGN. MAXI will provide all sky images of X-ray sources of about 20 mCrab in the energy band of 2-30 keV from observation on one ISS orbit (90 min), about 4.5 mCrab for one day, and about 1 mCrab for one month. A final detectability of MAXI could be 0.2 mCrab for 2 year observations.
117 - David M. Smith 2010
The detection of photons above 10 keV through MeV and GeV energies is challenging due to the penetrating nature of the radiation, which can require large detector volumes, resulting in correspondingly high background. In this energy range, most detec tors in space are either scintillators or solid-state detectors. The choice of detector technology depends on the energy range of interest, expected levels of signal and background, required energy and spatial resolution, particle environment on orbit, and other factors. This section covers the materials and configurations commonly used from 10 keV to > 1 GeV.
SuperAGILE is a coded mask experiment based on silicon microstrip detectors. It operates in the 15-45 keV nominal energy range, providing crossed one-dimensional images of the X-ray sky with an on-axis angular resolution of 6 arcmin, over a field of view in excess of 1 steradian. It was designed as the hard X-ray monitor of the AGILE space mission, a small satellite of the Italian Space Agency devoted to image the gamma-ray sky in the 30 MeV - 50 GeV energy band. The AGILE mission was launched in a low-earth orbit on 23^{rd} April 2007. In this paper we describe the SuperAGILE experiment, its construction and test processes, and its performance before flight, based on the on-ground test and calibrations.
As Chinas first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capabili ty of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.
We present results of the point spread function (PSF) calibration of the hard X-ray optics of the Nuclear Spectroscopic Telescope Array (NuSTAR). Immediately post-launch, NuSTAR has observed bright point sources such as Cyg X-1, Vela X-1, and Her X-1 for the PSF calibration. We use the point source observations taken at several off-axis angles together with a ray-trace model to characterize the in-orbit angular response, and find that the ray-trace model alone does not fit the observed event distributions and applying empirical corrections to the ray-trace model improves the fit significantly. We describe the corrections applied to the ray-trace model and show that the uncertainties in the enclosed energy fraction (EEF) of the new PSF model is < 3% for extraction apertures of R > 60 with no significant energy dependence. We also show that the PSF of the NuSTAR optics has been stable over a period of ~300 days during its in-orbit operation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا