ترغب بنشر مسار تعليمي؟ اضغط هنا

378 - M. S. Nevius , M. Conrad , F. Wang 2015
While numerous methods have been proposed to produce semiconducting graphene, a significant bandgap has never been demonstrated. The reason is that, regardless of the theoretical gap formation mechanism, disorder at the sub-nanometer scale prevents t he required chiral symmetry breaking necessary to open a bandgap in graphene. In this work, we show for the first time that a 2D semiconducting graphene film can be made by epitaxial growth. Using improved growth methods, we show by direct band measurements that a bandgap greater than 0.5 eV can be produced in the first graphene layer grown on the SiC(0001) surface. This work demonstrates that order, a property that remains lacking in other graphene systems, is key to producing electronically viable semiconducting graphene.
This paper reviews the results of the LSND and MiniBooNE experiments. The primary goal of each experiment was to effect sensitive searches for neutrino oscillations in the mass region with $Delta m^2 sim 1$ eV$^2$. The two experiments are complementa ry, and so the comparison of results can bring additional information with respect to models with sterile neutrinos. Both experiments obtained evidence for $bar u_mu rightarrow bar u_e$ oscillations, and MiniBooNE also observed a $ u_mu rightarrow u_e$ excess. In this paper, we review the design, analysis, and results from these experiments. We then consider the results within the global context of sterile neutrino oscillation models. The final data sets require a more extended model than the simple single sterile neutrino model imagined at the time that LSND drew to a close and MiniBooNE began. We show that there are apparent incompatibilities between data sets in models with two sterile neutrinos. However, these incompatibilities may be explained with variations within the systematic error. Overall, models with two (or three) sterile neutrinos seem to succeed in fitting the global data, and they make interesting predictions for future experiments.
We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have detected the ultraviolet-block ing impurity benzophenone (BP). We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. Based on the presence and initially exponential increase in the concentration of benzophenone observed, we propose that TPB degradation is a free radical-mediated photooxidation reaction, which is subsequently confirmed by displaying delayed degradation using a free radical inhibitor. Finally we show that the performance of wavelength-shifting coatings of the type envisioned for the LBNE experiment can be improved by 10-20%, with significantly delayed UV degradation, by using a 20% admixture of 4-tert-Butylcatechol.
Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals at $Delta m^2 sim 1$ eV$^2$. Neutrino oscillations at relatively short baselines provide a probe of these possible new states. This paper describes an accelerator-based experiment using neutral current coherent neutrino-nucleus scattering to strictly search for active-to-sterile neutrino oscillations. This experiment could, thus, definitively establish the existence of sterile neutrinos and provide constraints on their mixing parameters. A cyclotron-based proton beam can be directed to multiple targets, producing a low energy pion and muon decay-at-rest neutrino source with variable distance to a single detector. Two types of detectors are considered: a germanium-based detector inspired by the CDMS design and a liquid argon detector inspired by the proposed CLEAR experiment.
Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulations to predict reactor fission rates. Here we present results from the DRAGON and MURE simulation codes and compare the m to other industry standards for reactor core modeling. We use published data from the Takahama-3 reactor to evaluate the quality of these simulations against the independently measured fuel isotopic composition. The propagation of the uncertainty in the reactor operating parameters to the resulting antineutrino flux predictions is also discussed.
The detector for the MiniBooNE experiment at the Fermi National Accelerator Laboratory employs 1520 8 inch Hamamatsu models R1408 and R5912 photomultiplier tubes with custom-designed bases. Tests were performed to determine the dark rate, charge and timing resolutions, double-pulsing rate, and desired operating voltage for each tube, so that the tubes could be sorted for optimal placement in the detector. Seven phototubes were tested to find the angular dependence of their response. After the Super-K phototube implosion accident, an analysis was performed to determine the risk of a similar accident with MiniBooNE.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا