ﻻ يوجد ملخص باللغة العربية
Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulations to predict reactor fission rates. Here we present results from the DRAGON and MURE simulation codes and compare them to other industry standards for reactor core modeling. We use published data from the Takahama-3 reactor to evaluate the quality of these simulations against the independently measured fuel isotopic composition. The propagation of the uncertainty in the reactor operating parameters to the resulting antineutrino flux predictions is also discussed.
From the discovery of the neutrino to the precision neutrino oscillation measurements in KamLAND, nuclear reactors have proven to be an important source of antineutrinos. As their power and our knowledge of neutrino physics has increased, more sensit
For reactor antineutrino experiments, a thorough understanding of the fuel composition and isotopic evolution is of paramount importance for the extraction of $theta_{13}$. To accomplish these goals, we employ the deterministic lattice code DRAGON, a
Neutrinos are elementary particles in the standard model of particle physics. There are 3 flavors of neutrinos that oscillate among themselves. Their oscillation can be described by a 3$times$3 unitary matrix, containing three mixing angles $theta_{1
Reactor antineutrino experiment are used to study neutrino oscillation, search for signatures of nonstandard neutrino interaction, and monitor reactor operation for safeguard application. Reactor simulation is an important source of uncertainties for
Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of