ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiconducting graphene from highly ordered substrate interactions

378   0   0.0 ( 0 )
 نشر من قبل Meredith Nevius
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While numerous methods have been proposed to produce semiconducting graphene, a significant bandgap has never been demonstrated. The reason is that, regardless of the theoretical gap formation mechanism, disorder at the sub-nanometer scale prevents the required chiral symmetry breaking necessary to open a bandgap in graphene. In this work, we show for the first time that a 2D semiconducting graphene film can be made by epitaxial growth. Using improved growth methods, we show by direct band measurements that a bandgap greater than 0.5 eV can be produced in the first graphene layer grown on the SiC(0001) surface. This work demonstrates that order, a property that remains lacking in other graphene systems, is key to producing electronically viable semiconducting graphene.

قيم البحث

اقرأ أيضاً

Growth of perovskite oxide thin films on Si in crystalline form has long been a critical obstacle for the integration of multifunctional oxides into Si-based technologies. In this study, we propose pulsed laser deposition of a crystalline SrTiO3 thin film on a Si using graphene substrate. The SrTiO3 thin film on graphene has a highly (00l)-oriented crystalline structure which results from the partial epitaxy. Moreover, graphene promotes a sharp interface by highly suppressing the chemical intermixing. The important role of graphene as a 2D substrate and diffusion barrier allows expansion of device applications based on functional complex oxides.
248 - Y. Pan , N. Jiang , J.T. Sun 2007
We demonstrate a method for synthesizing large scale single layer graphene by thermal annealing of ruthenium single crystal containing carbon. Low energy electron diffraction indicates the graphene grows to as large as millimeter dimensions with good long-range order, and scanning tunneling microscope shows perfect crystallinity. Analysis of Moire pattern augmented with first-principles calculations shows the graphene layer is incommensurate with the underlying Ru(0001) surface forming a N by N superlattice with an average lattice strain of ~ +0.81%. Our findings offer an effective method for producing high quality single crystalline graphene for fundamental research and large-scale graphene wafer for device fabrication and integration.
We give the results of density functional calculations for graphene with a widely varying fluorine adsorptions. We give a systematic analysis of the adsorption energies, lattice constants, bulk modulus, bandgap openings, and magnetic properties. We f ind that a number of different adsorption geometries and a range of physical properties can occur for each adsorbate coverage. The systems are found to range from metallic to semiconducting with widely vary band gaps, and a number of interesting magnetic phases are found. We expect that many of these structures may occur in real materials systems. Further that a listing of the properties found here may help in determining what fluorinated graphenes are produced experimentally.
We present a laterally resolved X-ray magnetic dichroism study of the magnetic proximity effect in a highly ordered oxide system, i.e. NiO films on Fe3O4(110). We found that the magnetic interface shows an ultrasharp electronic, magnetic and structur al transition from the ferrimagnet to the antiferromagnet. The monolayer which forms the interface reconstructs to NiFe2O4 and exhibits an enhanced Fe and Ni orbital moment, possibly caused by bonding anisotropy or electronic interaction between Fe and Ni cations. The absence of spin-flop coupling for this crystallographic orientation can be explained by a structurally uncompensated interface and additional magnetoelastic effects.
Magneto-optical transitions between Landau levels can provide precise spectroscopic information on the electronic structure and excitation spectra of graphene, enabling probes of substrate and many-body effects. We calculate the magneto-optical condu ctivity of large-size graphene flakes using a tight-binding approach. Our method allows us to directly compare the magneto-optical response of an isolated graphene flake with one aligned on hexagonal boron nitride giving rise to a periodic superlattice potential. The substrate interaction induces band gaps away from the Dirac point. In the presence of a perpendicular magnetic field Landau-level like structures emerge from these zero-field band gaps. The energy dependence of these satellite structures is, however, not easily accessible by conventional probes of the density of states by varying the back-gate voltage. Here we propose the magneto-optical probing of the superlattice perturbed spectrum. Our simulation includes magneto-excitonic effects in first-order perturbation theory. Our approach yields a quantitative explanation of recently observed Landau-level dependent renormalizations of the Fermi velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا