ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - B. Mukhopadhyay 2019
We sketch a possible evolutionary scenario by which a highly magnetized super-Chandrasekhar white dwarf could be formed by accretion on to a commonly observed magnetized white dwarf. This is an exploratory study, when the physics in cataclysmic varia bles (CVs) is very rich and complex. Based on this, we also explore the possibility that the white dwarf pulsar AR Sco acquired its high spin and magnetic field due to repeated episodes of accretion and spin-down. We show that strong magnetic field dramatically decreases luminosity of highly magnetized white dwarf (B-WD), letting them below the current detection limit. The repetition of this cycle can eventually lead to a B-WD, recently postulated to be the reason for over-luminous type Ia supernovae. A spinning B-WD could also be an ideal source for continuous gravitational radiation and soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs). SGRs/AXPs are generally believed to be highly magnetized, but observationally not confirmed yet, neutron stars. Invoking B-WDs does not require the magnetic field to be as high as for neutron star based model, however reproducing other observed properties intact.
We theoretically explore a quantum memory using a single nanoparticle levitated in an optical dipole trap and subjected to feedback cooling. This protocol is realized by storing and retrieving a single photon quantum state from a mechanical mode in l evitated cavityless optomechanics. We describe the effectiveness of the photon-phonon-photon transfer in terms of the fidelity, the Wigner function, and the zero-delay second-order autocorrelation function. For experimentally accessible parameters, our numerical results indicate robust conversion of the quantum states of the input signal photon to those of the retrieved photon. We also show that high fidelity single-photon wavelength conversion is possible in the system as long as intense control pulses shorter than the mechanical damping time are used. Our work opens up the possibility of using levitated optomechanical systems for applications of quantum information processing.
Chronic Kidney Disease (CKD) is an increasingly prevalent condition affecting 13% of the US population. The disease is often a silent condition, making its diagnosis challenging. Identifying CKD stages from standard office visit records can help in e arly detection of the disease and lead to timely intervention. The dataset we use is highly imbalanced. We propose a hierarchical meta-classification method, aiming to stratify CKD by severity levels, employing simple quantitative non-text features gathered from office visit records, while addressing data imbalance. Our method effectively stratifies CKD severity levels obtaining high average sensitivity, precision and F-measure (~93%). We also conduct experiments in which the dimensionality of the data is significantly reduced to include only the most salient features. Our results show that the good performance of our system is retained even when using the reduced feature sets, as well as under much reduced training sets, indicating that our method is stable and generalizable.
We analyze magnetometry using an optically levitated nanodiamond. We consider a configuration where a magnetic field gradient couples the mechanical oscillation of the diamond with its spin degree of freedom provided by a Nitrogen vacancy center. Fir st, we investigate measurement of the position spectrum of the mechanical oscillator. We find that conditions of ultrahigh vacuum and feedback cooling allow a magnetic field gradient sensitivity of 1 $mu$Tm$^{-1}$/$sqrt{mbox{Hz}}$. At high pressure and room temperature, this sensitivity degrades and can attain a value of the order of 100 $m$Tm$^{-1}$/$sqrt{mbox{Hz}}$. Subsequently, we characterize the magnetic field gradient sensitivity obtainable by maneuvering the spin degrees of freedom using Ramsey interferometry. We find that this technique can offer photon-shot noise and spin-projection noise limited magnetic field gradient sensitivity of 100 $mu$Tm$^{-1}$/$sqrt{mbox{Hz}}$. We conclude that this hybrid levitated nanomechanical magnetometer provides a favorable and versatile platform for sensing applications.
Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a Nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.
105 - M. Bhattacharya 2015
There is currently much interest in the two-axis countertwisting spin squeezing Hamiltonian suggested originally by Kitagawa and Ueda, since it is useful for interferometry and metrology. No analytical solution valid for arbitrary spin values seems t o be available. In this article we systematically consider the issue of the analytical solvability of this Hamiltonian for various specific spin values. We show that the spin squeezing dynamics can be considered to be analytically solved for angular momentum values upto $21/2$, i.e. for $21$ spin half particles. We also identify the properties of the system responsible for yielding analytic solutions for much higher spin values than based on naive expectations. Our work is relevant for analytic characterization of squeezing experiments with low spin values, and semi-analytic modeling of higher values of spins.
260 - M. Bhattacharya 2015
In this article we present a concrete proposal for spin squeezing the ultracold ground state polar paramagnetic molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider a single, non-interacting molecule with angular momentum greater than $1/2$. Starting from an experimentally relevant effective Hamiltonian, we identify a parameter regime where different combinations of static electric and magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993)], the uniform field Hamiltonian proposed by Law et al. [C. K. Law, H. T Ng and P. T. Leung, Phys. Rev. A 63, 055601 (2001)], and a model of field propagation in a Kerr medium considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989)]. To support our conclusions, we provide analytical expressions as well as numerical calculations, including optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects such as the orientation-to-alignment transition.
278 - S. Marin , M. Bhattacharya 2015
The stereochemical properties of the ultracold ground state OH molecule in the presence of electric and magnetic fields are currently of considerable interest. For example, relevant quantities such as molecular alignment and orientation, calculated n umerically by using large basis sets, have lately appeared in the literature. In this work, based on our recent exact solution to an effective eight-dimensional matrix Hamiltonian for the molecular ground state, we present analytic expressions for the stereochemical properties of OH. Our results require the solution of algebraic equations only, agree well with the aforementioned fully numerical calculations, provide compact expressions for simple field geometries, allow ready access to relatively unexplored parameter space, and yield straightforwardly higher moments of the molecular axis distribution.
341 - A. Dutta , M. Bhattacharya , 2014
Pinning of dislocations at nanosized obstacles like precipitates, voids and bubbles, is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often explored at fundamen tal level by means of analytical tools, atomistic simulations and finite element methods. Nevertheless, the information extracted from such studies has not been utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to both conservative and non-conservative motions of dislocations.
In this Letter we show that the diffusion kinetics of kinetic energy among the atoms in non- equilibrium crystalline systems follows universal scaling relation and obey Levy-walk properties. This scaling relation is found to be valid for systems no matter how far they are driven out of equilibrium.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا