ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin squeezing an ultracold molecule

261   0   0.0 ( 0 )
 نشر من قبل Mishkat Bhattacharya
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Bhattacharya




اسأل ChatGPT حول البحث

In this article we present a concrete proposal for spin squeezing the ultracold ground state polar paramagnetic molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider a single, non-interacting molecule with angular momentum greater than $1/2$. Starting from an experimentally relevant effective Hamiltonian, we identify a parameter regime where different combinations of static electric and magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993)], the uniform field Hamiltonian proposed by Law et al. [C. K. Law, H. T Ng and P. T. Leung, Phys. Rev. A 63, 055601 (2001)], and a model of field propagation in a Kerr medium considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989)]. To support our conclusions, we provide analytical expressions as well as numerical calculations, including optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects such as the orientation-to-alignment transition.



قيم البحث

اقرأ أيضاً

Arrays of atoms trapped in optical tweezers combine features of programmable analog quantum simulators with atomic quantum sensors. Here we propose variational quantum algorithms, tailored for tweezer arrays as programmable quantum sensors, capable o f generating entangled states on-demand for precision metrology. The scheme is designed to generate metrological enhancement by optimizing it in a feedback loop on the quantum device itself, thus preparing the best entangled states given the available quantum resources. We apply our ideas to generate spin-squeezed states on Sr atom tweezer arrays, where finite-range interactions are generated through Rydberg dressing. The complexity of experimental variational optimization of our quantum circuits is expected to scale favorably with system size. We numerically show our approach to be robust to noise, and surpassing known protocols.
Spin squeezing is a form of entanglement that can improve the stability of quantum sensors operating with multiple particles, by inducing inter-particle correlations that redistribute the quantum projection noise. Previous analyses of potential metro logical gain when using spin squeezing were performed on theoretically ideal states, without incorporating experimental imperfections or inherent limitations which result in non-unitary quantum state evolution. Here, we show that potential gains in clock stability are substantially reduced when the spin squeezing is non-unitary, and derive analytic formulas for the clock performance as a function of squeezing, excess spin noise, and interferometer contrast. Our results highlight the importance of creating and employing nearly pure entangled states for improving atomic clocks.
Conventional information processors freely convert information between different physical carriers to process, store, or transmit information. It seems plausible that quantum information will also be held by different physical carriers in application s such as tests of fundamental physics, quantum-enhanced sensors, and quantum information processing. Quantum-controlled molecules in particular could transduce quantum information across a wide range of quantum-bit (qubit) frequencies, from a few kHz for transitions within the same rotational manifold, a few GHz for hyperfine transitions, up to a few THz for rotational transitions, to hundreds of THz for fundamental and overtone vibrational and electronic transitions, possibly all within the same molecule. Here, we report the first demonstration of entanglement between states of the rotation of a $rm^{40}CaH^+$ molecular ion and internal states of a $rm^{40}Ca^+$ atomic ion. The qubit addressed in the molecule has a frequency of either 13.4 kHz or 855 GHz, highlighting the versatility of molecular qubits. This work demonstrates how molecules can transduce quantum information between qubits with different frequencies to enable hybrid quantum systems. We anticipate that quantum control and measurement of molecules as demonstrated here will create opportunities for quantum information science, quantum sensors, fundamental and applied physics, and controlled quantum chemistry.
We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant $^{87}$Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous variables quantum protocols was observed. The extreme simplicity of the setup, based on standard polarization components, makes it particularly convenient for quantum information applications.
We study the strong coupling between photons and atoms that can be achieved in an optical nanofiber geometry when the interaction is dispersive. While the Purcell enhancement factor for spontaneous emission into the guided mode does not reach the str ong-coupling regime for individual atoms, one can obtain high cooperativity for ensembles of a few thousand atoms due to the tight confinement of the guided modes and constructive interference over the entire chain of trapped atoms. We calculate the dyadic Greens function, which determines the scattering of light by atoms in the presence of the fiber, and thus the phase shift and polarization rotation induced on the guided light by the trapped atoms. The Greens function is related to a full Heisenberg-Langevin treatment of the dispersive response of the quantized field to tensor polarizable atoms. We apply our formalism to quantum nondemolition (QND) measurement of the atoms via polarimetry. We study shot-noise-limited detection of atom number for atoms in a completely mixed spin state and the squeezing of projection noise for atoms in clock states. Compared with squeezing of atomic ensembles in free space, we capitalize on unique features that arise in the nanofiber geometry including anisotropy of both the intensity and polarization of the guided modes. We use a first principles stochastic master equation to model the squeezing as function of time in the presence of decoherence due to optical pumping. We find a peak metrological squeezing of ~5 dB is achievable with current technology for ~2500 atoms trapped 180 nm from the surface of a nanofiber with radius a=225 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا