ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic excitations in the optimally doped high-$T_mathrm{c}$ superconductor Bi$_{1.5}$Pb$_{0.55}$Sr$_{1.6}$La$_{0.4}$CuO$_{6+delta}$ (OP-Bi2201, $T_mathrm{c}simeq 34$ K) are investigated by Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to $sim$350~meV at zone boundary, similarly to other hole-doped cuprates. However, above $sim$0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasi-elastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice and charge modes in this compound. We also compare the magnetic excitation spectra near the anti-nodal zone boundary in the single layer OP-Bi2201 and in the bi-layer optimally doped Bi$_{1.5}$Pb$_{0.6}$Sr$_{1.54}$CaCu$_2$O$_{8+delta}$ (OP-Bi2212, $T_mathrm{c}simeq96$ K). The strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the super-exchange interaction and the short-range magnetic correlation cannot be directly related to $T_mathrm{c}$, not even within the same family of cuprates.
The momentum dependence of the superconducting gap in the cuprates has been debated, with most experiments reporting a deviation from a simple $d_{x^2-y^2}$ form in the underdoped regime and a few experiments claiming that a simple $d_{x^2-y^2}$ form persists down to the lowest dopings. We affirm that the superconducting gap function in sufficiently underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212) deviates from a simple textit{d}-wave form near the antinode. This is observed in samples where doping is controlled only by oxygen annealing, in contrast to claims that this effect is only seen in cation-substituted samples. Moreover, a quasiparticle peak is present at the antinode down to p$=$0.08, refuting claims that a deviation from a simple textit{d}-wave form is a data analysis artifact stemming from difficulty in assessing a gap in the absence of a quasiparticle.
A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials such as the cuprate high temperature superconductors. Because of its unique momentum-space discrimination, angle-resolve d photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping-and-temperature dependence ARPES study of spectral gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212), covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p$=$0.19 for the pseudogap phase and p$=$0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below T$_c$ and exists p$>$0.19 at higher temperatures. Our data imply a revised phase diagram which reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome.
The interplay between superconductivity and the pseudogap is an important aspect of cuprate physics. However, the nature of the pseudogap remains controversial, in part because different experiments have suggested different gap functions. Here we pre sent a photon-energy-dependence angle-resolved photoemission spectroscopy (ARPES) study on Bi$_{1.5}$Pb$_{0.55}$Sr$_{1.6}$La$_{0.4}$CuO$_{6+delta}$. We find that antinodal ARPES spectra at low photon energies are dominated by background signals which can lead to a misevaluation of the spectral gap size. Once background is properly accounted for, independent of photon energy, the antinodal spectra robustly show two coexisting features at different energies dominantly attributed to the pseudogap and superconductivity, as well as an overall spectral gap which deviates from a simple d-wave form. These results support the idea that the spectral gap is distorted due to the competition between the pseudogap and superconductivity.
Ca1-xSrxVO3 is a Mott-Hubbard-type correlated electron system whose bandwidth can be varied by the V-O-V bond angle, but the actual effect of bandwidth control on the electronic structure has been controversial in previous photoemission experiments. In this work, band dispersions and Fermi surfaces of SrVO3 and CaVO3 are studied by angle-resolved photoemission spectroscopy. Near the Fermi level (EF), three bands forming cylindricalFermi surfaces derived from the three V 3d t2g orbitals have been observed. The observed band widths for both compounds are almost half of those predicted by local-density-approximation band-structure calculation, confirming mass renormalization caused by electron correlation. It has been clearly demonstrated that the width of the d band in CaVO3 is narrower than that in SrVO3, qualitatively consistent with the result of band-structure calculation. Roles of the orthorhombic lattice distortion and electron correlation in the observed band narrowing are discussed.
In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (Tc), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-Tc cuprate superconductors above Tc, an energy gap called the pseudogap exists, and is controversially attributed either to pre-formed superconducting pairs, which would exhibit particle-hole symmetry, or to competing phases which would typically break it. Scanning tunnelling microscopy (STM) studies suggest that the pseudogap stems from lattice translational symmetry breaking and is associated with a different characteristic spectrum for adding or removing electrons (particle-hole asymmetry). However, no signature of either spatial or energy symmetry breaking of the pseudogap has previously been observed by angle-resolved photoemission spectroscopy (ARPES). Here we report ARPES data from Bi2201 which reveals both particle-hole symmetry breaking and dramatic spectral broadening indicative of spatial symmetry breaking without long range order, upon crossing through T* into the pseudogap state. This symmetry breaking is found in the dominant region of the momentum space for the pseudogap, around the so-called anti-node near the Brillouin zone boundary. Our finding supports the STM conclusion that the pseudogap state is a broken-symmetry state that is distinct from homogeneous superconductivity.
How out-of-plane disorder affects the electronic structure has been investigated for the single-layer cuprates Bi$_2$Sr$_{1.6}$$Ln$$_{0.4}$CuO$_{6+delta}$ ($Ln$ = La, Nd, Gd) by angle-resolved photoemission spectroscopy. We have observed that, with i ncreasing disorder, while the Fermi surface shape and band dispersions are not affected, the quasi-particle width increases, the anti-nodal gap is enhanced and the superconducting gap in the nodal region is depressed. The results indicate that the superconductivity is significantly depressed by out-of-plane disorder through the enhancement of the anti-nodal gap and the depression of the superconducting gap in the nodal region.
In underdoped cuprates, only a portion of the Fermi surface survives as Fermi arcs due to pseudogap opening. In hole-doped La$_{2}$CuO$_4$, we have deduced the coherence temperature $T_{coh}$ of quasi-particles on the Fermi arc above which the broade ned leading edge position in angle-integrated photoemission spectra is shifted away from the Fermi level and the quasi-particle concept starts to lose its meaning. $T_{coh}$ is found to rapidly increase with hole doping, an opposite behavior to the pseudogap temperature $T^*$. The superconducting dome is thus located below both $T^*$ and $T_{coh}$, indicating that the superconductivity emerges out of the coherent Fermionic quasi-particles on the Fermi arc. $T_{coh}$ remains small in the underdoped region, indicating that incoherent charge carriers originating from the Fermi arc are responsible for the apparently metallic transport at high temperatures.
We have investigated the doping and temperature dependences of the pseudogap/superconducting gap in the single-layer cuprate La$_{2-x}$Sr$_x$CuO$_4$ by angle-resolved photoemission spectroscopy. The results clearly exhibit two distinct energy and tem perature scales, namely, the gap around ($pi$,0) of magnitude $Delta^*$ and the gap around the node characterized by the d-wave order parameter $Delta_0$, like the double-layer cuprate Bi2212. In comparison with Bi2212 having higher $T_c$s, $Delta_0$ is smaller, while $Delta^*$ and $T^*$ are similar. This result suggests that $Delta^*$ and $T^*$ are approximately material-independent properties of a single CuO$_2$ plane, in contrast the material-dependent $Delta_0$, representing the pairing strength.
We have performed angle-resolved photoemission and core-level x-ray photoemission studies of the single-layer cuprate Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ (Bi2201) and revealed the doping evolution of the electronic structure from the lightly-doped to optimally-doped regions. We have observed the formation of the dispersive quasi-particle band, evolution of the Fermi ``arc into the Fermi surface and the shift of the chemical potential with hole doping as in other cuprates. The doping evolution in Bi2201 is similar to that in Ca$_{2-x}$Na$_{x}$CuO$_{2}$Cl$_2$ (Na-CCOC), where a rapid chemical potential shift toward the lower Hubbard band of the parent insulator has been observed, but is quite different from that in La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO), where the chemical potential does not shift, yet the dispersive band and the Fermi arc/surface are formed around the Fermi level already in the lightly-doped region. The (underlying) Fermi surface shape and band dispersions are quantitatively analyzed using tight-binding fit, and the deduced next-nearest-neighbor hopping integral $t$ also confirm the similarity to Na-CCOC and the difference from LSCO.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا