ترغب بنشر مسار تعليمي؟ اضغط هنا

Ubiquitous antinodal quasiparticles and deviation from simple d-wave form in underdoped Bi-2212

209   0   0.0 ( 0 )
 نشر من قبل Inna Vishik
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The momentum dependence of the superconducting gap in the cuprates has been debated, with most experiments reporting a deviation from a simple $d_{x^2-y^2}$ form in the underdoped regime and a few experiments claiming that a simple $d_{x^2-y^2}$ form persists down to the lowest dopings. We affirm that the superconducting gap function in sufficiently underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212) deviates from a simple textit{d}-wave form near the antinode. This is observed in samples where doping is controlled only by oxygen annealing, in contrast to claims that this effect is only seen in cation-substituted samples. Moreover, a quasiparticle peak is present at the antinode down to p$=$0.08, refuting claims that a deviation from a simple textit{d}-wave form is a data analysis artifact stemming from difficulty in assessing a gap in the absence of a quasiparticle.



قيم البحث

اقرأ أيضاً

Using angle-resolved photoemission (ARPES), it is revealed that the low-energy electronic excitation spectra of highly underdoped superconducting and non-superconducting La(2-x)SrxCuO4 cuprates are gapped along the entire underlying Fermi surface at low temperatures. We show how the gap function evolves to a d(x2-y2) form as increasing temperature or doping, consistent with the vast majority of ARPES studies of cuprates. Our results provide essential information for uncovering the symmetry of the order parameter(s) in strongly underdoped cuprates, which is a prerequisite for understanding the pairing mechanism and how superconductivity emerges from a Mott insulator.
Recent angle resolved photoemission cite{yang-nature-08} and scanning tunneling microscopy cite{kohsaka-nature-08} measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features o f the normal state such as particle-hole asymmetry, maxima in the energy dispersion and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang textit{et al.} for the single particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.
Microscopy (STM). At all dopings, the low energy density-of-states modulations are analyzed according to a simple model of quasiparticle interference and found to be consistent with Fermi-arc superconductivity. The superconducting coherence-peaks, ub iquitous in near-optimal tunneling spectra, are destroyed with strong underdoping and a new spectral type appears. Exclusively in regions exhibiting this new spectrum, we find local `checkerboard charge-order with wavevector Q=(2pi/4.5a,0);(0,2pi/4.5a)+15%. Surprisingly, this order coexists harmoniously with the the low energy
200 - U. Chatterjee , M. Shi , D. Ai 2009
We use angle resolved photoemission spectroscopy to probe the electronic excitations of the non-superconducting state that exists between the antiferromagnetic Mott insulator at zero doping and the superconducting state at larger dopings in Bi_2Sr_2C aCu_2O_{8+delta}. We find that this state is a nodal liquid whose excitation gap becomes zero only at points in momentum space. Despite exhibiting a resistivity characteristic of an insulator and the absence of coherent quasiparticle peaks, this material has the same gap structure as the d-wave superconductor. We observe a smooth evolution of the spectrum across the insulator-to-superconductor transition, which suggests that high temperature superconductivity emerges when quantum phase coherence is established in a non-superconducting nodal liquid.
We scrutinize the enhanced superconducting performance of melt quench Bismuth based Bi2Sr2CaCu2O8 (Bi-2212) superconductor. The superconducting properties of melt quenched Bi-2212 (Bi2212-MQ) sample are compared with non-melted Bi2212-NM and Bi1.4Pb0 .6Sr2Ca2Cu3O10 (Bi-2223). Crystal structure and morphology of the samples are studied using X-ray diffraction and Scanning Electron Microscopy (SEM) techniques. The high field (14T) magneto-transport and DC/AC magnetic susceptibility techniques are extensively used to study the superconducting properties of the investigated samples. The superconducting critical temperature (Tc) and upper critical field (Hc2) as well as thermally activated flux flow (TAFF) activation energy are estimated from the magneto-resistive [R(T)H] measurements. Both DC magnetization and amplitude dependent AC susceptibility measurements are used to determine the field and temperature dependence of critical current density (Jc) for studied samples. On the other hand, the frequency dependent AC susceptibility is used for estimating flux creep activation energy. It is found that melt quenching significantly enhances the superconducting properties of granular Bi-2212 superconductor. The results are interpreted in terms of better alignment and inter-connectivity of the grains along with reduction of grain boundaries for Bi2212-MQ sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا