ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal versus Material-Dependent Two-Gap Behaviors in the High-Tc Cuprates: Angle-Resolved Photoemission Study of La2-xSrxCuO4

221   0   0.0 ( 0 )
 نشر من قبل Teppei Yoshida
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the doping and temperature dependences of the pseudogap/superconducting gap in the single-layer cuprate La$_{2-x}$Sr$_x$CuO$_4$ by angle-resolved photoemission spectroscopy. The results clearly exhibit two distinct energy and temperature scales, namely, the gap around ($pi$,0) of magnitude $Delta^*$ and the gap around the node characterized by the d-wave order parameter $Delta_0$, like the double-layer cuprate Bi2212. In comparison with Bi2212 having higher $T_c$s, $Delta_0$ is smaller, while $Delta^*$ and $T^*$ are similar. This result suggests that $Delta^*$ and $T^*$ are approximately material-independent properties of a single CuO$_2$ plane, in contrast the material-dependent $Delta_0$, representing the pairing strength.

قيم البحث

اقرأ أيضاً

117 - T. Yoshida , W. Malaeb , S. Ideta 2012
Relationship between the superconducting gap and the pseudogap has been the subject of controversies. In order to clarify this issue, we have studied the superconducting gap and pseudogap of the high-Tc superconductor La2-xSrxCuO4 (x=0.10, 0.14) by a ngle-resolved photoemission spectroscopy (ARPES). Through the analysis of the ARPES spectra above and below Tc, we have identified a superconducting coherence peak even in the anti-nodal region on top of the pseudogap of a larger energy scale. The superconducting peak energy nearly follows the pure d-wave form. The d-wave order parameter Delta_0 [defined by Delta(k)=Delta_0(cos(kxa)-cos(kya)) ] for x=0.10 and 0.14 are nearly the same, Delta_0 ~ 12-14 meV, leading to strong coupling 2Delta_0/kB Tc ~ 10. The present result indicates that the pseudogap and the superconducting gap are distinct phenomena and can be described by the two-gap scenario.
Recent excperiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-Tc superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensio nal Hubbard model are presented which show that this model qualitatively describes this gap dichotomy: One gap (antinodal) increases with less doping, a behavior long considered as reflecting the general gap behavior of the HTSC. On the other hand, the near-nodal gap does even slightly decrease with underdoping. An explanation of this unexpected behavior is given which emphasizes the crucial role of spin fluctuations in the pairing mechanism.
We present a numerical study of the isotope effect on the angle resolved photoemission spectra (ARPES) in the undoped cuprates. By the systematic-error-free Diagrammatic Monte Carlo method, the Lehman spectral function of a single hole in the ttt-J m odel in the regime of intermediate and strong couplings to optical phonons is calculated for normal and isotope substituted systems. We found that the isotope effect is strongly energy-momentum dependent, and is anomalously enhanced in the intermediate coupling regime while it approaches to that of the localized hole model in the strong coupling regime. We predict the strengths of effect as well as the fine details of the ARPES lineshape change. Implications to the doped case are also discussed.
202 - Yang Luo , Chen Zhang , Qi-Yi Wu 2019
The three-dimensional electronic structure and Ce 4f electrons of the heavy fermion superconductor CePt2In7 is investigated. Angle-resolved photoemission spectroscopy using variable photon energy establishes the existence of quasi-two and three dimen sional Fermi surface topologies. Temperature-dependent 4d-4f on-resonance photoemission spectroscopies reveal that heavy quasiparticle bands begin to form at a temperature well above the characteristic (coherence) temperature T*. T* emergence may be closely related to crystal electric field splitting, particularly the low-lying heavy band formed by crystal electric field splitting.
331 - T. Yoshida , S. Ideta , I. Nishi 2012
We have performed an angle-resolved photoemission study of the hole-overdoped iron pnictide superconductor KFe2As2, which shows a low Tc of ~4 K. Most of the observed Fermi surfaces show nearly two-dimensional shapes, while a band near the Fermi leve l shows a strong dispersion along the kz direction and forms a small three-dimensional hole pocket centered at the Z point, as predicted by band-structure calculation. However, hole Fermi surfaces of yz and zx orbital character centered at the Gamma point of the two-dimensional Brillouin zone are smaller than those predicted by the calculation while the other hole Fermi surfaces of xy orbital character is much larger. Clover-shaped hole Fermi surfaces around the corner of the 2D BZ are also larger than those predicted by the calculation. These observations are consistent with the de Haas-van Alphen measurement and indicate orbital-dependent electron correlation effects. The effective masses of the energy bands show moderate to strong enhancement, partly due to electron correlation and partly due to energy shifts from the calculated band structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا