ﻻ يوجد ملخص باللغة العربية
In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (Tc), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-Tc cuprate superconductors above Tc, an energy gap called the pseudogap exists, and is controversially attributed either to pre-formed superconducting pairs, which would exhibit particle-hole symmetry, or to competing phases which would typically break it. Scanning tunnelling microscopy (STM) studies suggest that the pseudogap stems from lattice translational symmetry breaking and is associated with a different characteristic spectrum for adding or removing electrons (particle-hole asymmetry). However, no signature of either spatial or energy symmetry breaking of the pseudogap has previously been observed by angle-resolved photoemission spectroscopy (ARPES). Here we report ARPES data from Bi2201 which reveals both particle-hole symmetry breaking and dramatic spectral broadening indicative of spatial symmetry breaking without long range order, upon crossing through T* into the pseudogap state. This symmetry breaking is found in the dominant region of the momentum space for the pseudogap, around the so-called anti-node near the Brillouin zone boundary. Our finding supports the STM conclusion that the pseudogap state is a broken-symmetry state that is distinct from homogeneous superconductivity.
A d-wave superconductor, its phase coherence progressively destroyed by unbinding of vortex-antivortex pairs, suffers an instability related to chiral symmetry breaking in two-flavor QED$_3$. The chiral manifold exhibits large degeneracy spanned by p
Spontaneous time-reversal symmetry (TRS) breaking plays an important role in studying strongly correlated unconventional superconductors. When the superconducting gap functions with different pairing symmetries compete, an Ising ($Z_2$) type symmetry
The superconducting state of metals has long provided a classic example of particle-hole symmetry (PHS) at low energy. Fermionic self-energy results based on first principles theory for the electron-phonon coupling in H$_3$S presented here illustrate
Reconstruction of the Fermi surface of high-temperature superconducting cuprates in the pseudogap state is analyzed within nearly exactly solvable model of the pseudogap state, induced by short-range order fluctuations of antiferromagnetic (AFM, spin
We calculate scattering interference patterns for various electronic states proposed for the pseudogap regime of the cuprate superconductors. The scattering interference models all produce patterns whose wavelength changes as a function of energy, in