ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a comprehensive theoretical study of the static spin response in HgTe quantum wells, revealing distinctive behavior for the topologically nontrivial inverted structure. Most strikingly, the q=0 (long-wave-length) spin susceptibility of the undoped topological-insulator system is constant and equal to the value found for the gapless Dirac-like structure, whereas the same quantity shows the typical decrease with increasing band gap in the normal-insulator regime. We discuss ramifications for the ordering of localized magnetic moments present in the quantum well, both in the insulating and electron-doped situations. The spin response of edge states is also considered, and we extract effective Lande g-factors for the bulk and edge electrons. The variety of counter-intuitive spin-response properties revealed in our study arises from the systems versatility in accessing situations where the charge-carrier dynamics can be governed by ordinary Schrodinger-type physics, mimics the behavior of chiral Dirac fermions, or reflects the materials symmetry-protected topological order.
294 - A. G. Moghaddam 2014
The proximity effect refers to the phenomenon whereby superconducting properties are induced in a normal conductor that is in contact with an intrinsically superconducting material. In particular, the combination of nano-structured semiconductors wit h bulk superconductors is of interest because these systems can host unconventional electronic excitations such as Majorana fermions when the semiconductors charge carriers are subject to a large spin-orbit coupling. The latter requirement generally favors the use of hole-doped semiconductors. On the other hand, basic symmetry considerations imply that states from typical simple-metal superconductors will predominantly couple to a semiconductors conduction-band states and, therefore, in the first instance generate a proximity effect for band electrons rather than holes. In this article, we show how the superconducting correlations in the conduction band are transferred also to hole states in the valence band by virtue of inter-band coupling. A general theory of the superconducting proximity effect for bulk and low-dimensional hole systems is presented. The interplay of inter-band coupling and quantum confinement is found to result in unusual wave-vector dependencies of the induced superconducting gap parameters. One particularly appealing consequence is the density tunability of the proximity effect in hole quantum wells and nanowires, which creates new possibilities for manipulating the transition to nontrivial topological phases in these systems.
219 - T. Kernreiter 2013
We have calculated the exchange-energy contribution to the total energy of quasi-two-dimensional hole systems realized by a hard-wall quantum-well confinement of valence-band states in typical semiconductors. The magnitude of the exchange energy turn s out to be suppressed from the value expected for analogous conduction-band systems whenever the mixing between heavy-hole and light-hole components is strong. Our results are obtained using a very general formalism for calculating the exchange energy of many-particle systems where single-particle states are spinors. We have applied this formalism to obtain analytical results for spin-3/2 hole systems in limiting cases.
We have studied quantum-well-confined holes based on the Luttinger-model description for the valence band of typical semiconductor materials. Even when only the lowest quasi-two-dimensional (quasi-2D) subband is populated, the static spin susceptibil ity turns out to be very different from the universal isotropic Lindhard-function lineshape obtained for 2D conduction-electron systems. The strongly anisotropic and peculiarly density-dependent spin-related response of 2D holes at long wavelengths should make it possible to switch between easy-axis and easy-plane magnetization in dilute magnetic quantum wells. An effective g factor for 2D hole systems is proposed.
229 - T. Kernreiter 2011
We present a theoretical study of ac charge transport arising from adiabatic temporal variation of zero-field spin splitting in a quasi-onedimensional hole system (realized, e.g., in a quantum wire or point contact). As in conduction-electron systems , part of the current results from spin-dependent electromotive forces. We find that the magnitude of this current contribution is two orders of magnitude larger for holes and exhibits parametric dependences that make it more easily accessible experimentally. Our results suggest hole structures to be good candidates for realizing devices where spin currents are pumped by time-varying electric fields.
We have calculated the density-density (Lindhard) response function of a homogeneous two-dimensional (2D) hole gas in the static (omega=0) limit. The bulk valence-band structure comprising heavy-hole (HH) and light-hole (LH) states is modeled using L uttingers kdotp approach within the axial approximation. We elucidate how, in contrast to the case of conduction electrons, the Lindhard function of 2D holes exhibits unique features associated with (i) the confinement-induced HH-LH energy splitting and (ii) the HH-LH mixing arising from the charge carriers in-plane motion. Implications for the dielectric response and related physical observables are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا